
INMO (2022-23)

INSTRUCTIONS
•	 Calculators (in any form) and protractors are not allowed.
•	 Rulers and compasses are allowed.
•	 All questions carry equal marks. Maximum marks: 102.
•	 No marks will be awarded for stating an answer without justification.
•	 Answer all the questions.
•	 Please read the instructions on the answer booklet very carefully before answering the questions.

Time: 4 hours

1.	 Let S be a finite set of positive integers. Assume that there are precisely 2023 ordered pairs (x, y) in  
S × S so that the product xy is a perfect square. Prove that one can find at least four distinct elements in 
S so that none of their pairwise products is a perfect square.�

	 Note: As an example, if S = {1, 2, 4}, there are exactly five such ordered pairs: (1, 1), (1, 4), (2, 2),  
(4, 1), and (4, 4).� [INMO-2023]

2.	 Suppose a0, ..., a100 are positive reals. Consider the following polynomial for each k in {0, 1, ..., 100}:
	 a100+kx

100 + 100a99+kx
99 + a98+kx

98 + a97+kx
97 + ··· + a2+kx2 + a1+kx + ak, where indices are taken 

modulo 101, i.e., a100+i = ai−1 for any i in {1, 2, ..., 100}.� [INMO-2023]
	 Show that it is impossible that each of these 101 polynomials has all its roots real.
3.	 Let  denote the set of all positive integers. Find all real numbers c for which there exists a function  

f :  →  satisfying:
	 (a)	 for any x, a ∈ , the quantity 

( ) ( )f x a f x

a

+ −
 is an integer if and only if a = 1;

	 (b)	 for all x ∈ , we have |f (x) − cx| < 2023.� [INMO-2023]
4.	 Let k ≥ 1 and N > 1 be two integers. On a circle are placed 2N +1 coins all showing heads. Calvin and 

Hobbes play the following game. Calvin starts and on his move can turn any coin from heads to tails. 
Hobbes on his move can turn at most one coin that is next to the coin that Calvin turned just now from 
tails to heads. Calvin wins if at any moment there are k coins showing tails after Hobbes has made his 
move. Determine all values of k for which Calvin wins the game.� [INMO-2023]

5.	 Euler marks n different points in the Euclidean plane. For each pair of marked points, Gauss writes 
down the number 2log d    where d is the distance between the two points.

	 Prove that Gauss writes down less than 2n distinct values.� [INMO-2023]
	 Note: For any d > 0, 2log d    is the unique integer k such that 2k ≤ d < 2k+1.
6.	 Euclid has a tool called cyclos which allows him to do the following:
	 •	 Given three non-collinear marked points, draw the circle passing through them.
	 •	 Given two marked points, draw the circle with them as endpoints of a diameter.
	 •	 Mark any intersection points of two drawn circles or mark a new point on a drawn circle.
	 Show that given two marked points, Euclid can draw a circle centered at one of them and passing 

through the other, using only the cyclos.� [INMO-2023]
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1.	 Solution 1. Consider the graph whose vertices 
are elements of S, with an edge between x and 
y if and only if xy is a perfect square. We claim 
every connected component is a clique.

		  Indeed, take any two vertices 
corresponding to x, y in S in the same 
connected component. It suffices to show they 
are adjacent. By assumption, there is a path 
between them; so there is a sequence x = a1, a2, 
..., an –1, an = y so that ai + 1 is a perfect square 
for 1 ≤ i < n. Therefore

	

1 2 2 3 1
1 2 2

2 1

( )( )...( )
....

n n
n

n

a a a a a a
xy a a

a a
−

−

= =

	 is a perfect square as well. This proves our 
claim.

	 	 Now suppose first there are at most 3 
connected components, with sizes a, b, c 
(possibly zero). Note that for (x, y) ∈ S × S, xy 
is a perfect square if and only if x, y are in the 
same component, which can be chosen is a2 + 
b2 + c2 ways. Thus

	 a2 + b2 + c2  = 2023.
	 But since squares can only be 0, 1 or 4 mod 

8, and 2023 is 7 mod 8, the above equation 
is impossible. Thus our graph must have at 
least four components. Picking a number 
from each component, we can now satisfy the 
requirements of the problem.

	 Solution 2. For a in S, let Sa = {x ∈ S|ax is a 
square}. Let a, b be elements of S. Suppose that 
x is in Sa ∩ Sb. Then ax and bx are squares and 

hence 2
.ax bx

ab
x

=  is a square. Then for any y 

in S such that ay is a square it follows that by is 
a square, so Sa = Sb. Hence for two elements a, 
b in S, either Sa = Sb or Sa I Sb = f.

		  Now, S = USa where the union runs over 
elements of S (since a ∈ Sa for any a ∈ S).

	 Let S = 
1aS  U 

2aS  U ....  U 
naS  for some 

elements a1, a2, ..., an of S such that 
iaS  I 

jaS  = f for 1 ≤ i < j ≤ n. Then the number 

of distinct pairs (x, y) of S × S such that xy 
is a square is precisely |

1aS |2 +|
2aS |2 +...+  

|
naS |2. Since 2023 ≡ 7 (mod 8) it follows that 

n > 3 as in the previous solution. Thus we have 
four elements a1, a2, a3, a4 none of whose 
pairwise products is a square.

	 For those familiar with the language of linear 
algebra and finite fields, the above argument 
can be reformulated as follows:

	 Solution 3. Let p1 < p2 < ... be the sequence 
of prime numbers. Denote by 2Fω  the  
F2 vector space of all binary sequences  
(a1, a2, ...) with entries in F2. Consider the set 
map 2: FωΦ →�  defined by

	 1 1( ) : ( (n)  (mod 2))p in u ≥Φ =

	 for all n ∈ N. It is clear that for x, y ∈ , 
the product xy is a perfect square if and only 
if  ( ) ( )x yΦ = Φ . So we want | ( ) | 4SΦ ≥
. Indeed, decompose S as a union of fibres, 

1
( ) ( )a SS a−

∈Φ= Φ∪ . Each fibre with size r 
accounts for 22( )r  + r  = r2 pairs towards the  
count, so if Φ (S) has at most three elements, 
then a2 + b2 + c2 = 2023 has a solution in non-
negative integers. This is a contradiction mod 
8, by simply checking that no triple formed 
using one of {0, 1, 4} can add to 7 mod 8.

2.	 Solution 1. Let n = 50. For the sake of 
contradiction, assume that each of these 
polynomials has all real roots; these roots must 
be negative. Let

	 –a1,k; – a2,k,  ..., – a2n,k
	 be the roots of the polynomial
	 a2n+kx

2n + 2na2n–1+kx
2n–1 + a2n–2+kx

2n–2  
+ a2n–3 + kx

2n–3 + ....  + a2+ k
x2 + a1+ k

x + ak :
	 Indices are taken modulo 2n + 1, so a2n+k  

= ak–1 and a2n–1+k = ak–2. Then

	

22
2

, ,
1 11 1

2 . ;
nn

k k
j k j k

k kj j

a a
n

a a
−

− −= =

 
α = α = 

 
∑ ∏
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	 Since the aj,k’s are positive, AM-GM inequality 
can be applied and by virtue of it we are led to

	

2
2

1 1

n
k k

k k

a a

a a
−

− −

 
≥  

	 for each k. As both sides of the inequalities are 
positive, multiplying them we obtain

	

22 2
2

1 10 0

nn n
k k

k kk k

a a

a a
−

− −= =

 
≥  ∏ ∏

	 But both sides are equal to 1. Therefore all the 
2n + 1 A.M-G.M inequalities are equalities 
implying that for each k,

	 a1,k = a2,k = ... = a2n,k = 2

1

k

k

a

a
−

−

	 Since n ≥ 2, using Vieta’s relations gives

	

2
3 2

, ,
1 11 2

2
2

k k
i k j k

k ki j n

na a

a a
− −

− −≤ < ≤

  
= α α =       ∑

	 Simplifying leads

	

2
2 1 3

2
2 k k k
n

a a a− − −
 

=  

	 for each k. Multiplying all these equations 
yields

	

22 1 2

0

2
1 0,

2

n n

k
k

n
a

+

=

    
− =         

∏

	 which shows that at least one ak = 0, a 
contradiction.

	 Solution 2. As above, one proves that

	 a1,k = a2,k = ... = a2n,k = 2

1
.k

k

a

a
−

−	 This implies
	 a2n+kx

2n + 2na2n–1+kx
2n–1 + ... + a1+kx + ak = 

a2n+k 

2
2

1
.

n
k

k

a
x

a
−

−

 
+    

	 For n ≥ 2, comparing coefficients of x0 and x1, 
we see that

	 ak = a2n+k
2

2

1
,

n
k

k

a

a
−

−

 
  

 ak+1 

	     = a2n+k. 2n
2 1

2

1
,

n
k

k

a

a

−
−

−

 
  

	 Hence we obtain

	

1 1

2
2 . .k k

k k

a a
n

a a
+ −

−
=

	 This must hold for all k. However, if we 

pick k is such that 1k

k

a

a
+ is minimal, we must 

necessarily have

	

1 1 1

2 2
2 . ,k k k

k k k

a a a
n

a a a
+ − −

− −
≤ <

	 a contradiction.
	 Several other beautiful solutions were pointed 

out to us; we include a few of them.
	 Solution 3. As usual, assume all of these 

polynomials have all real roots. We consider the 
polynomial obtained by writing the coefficients 
of the given polynomials in reverse order:

	 akx
100 + ak+1x99 + ak+2x98 + .... + 100ak+99x + 

ak+100.
	 This also has all its roots real: in fact, its roots 

are reciprocals of the original polynomial. By 
Rolle’s theorem, its derivative must also have 
all roots real. Repeating this argument, we see 
that the polynomial obtained by differentiating 
this 98 times

	
2

1 2
100! 99! 98!

2! k k ka x a x a+ ++ +

	 also have real roots. Therefore this must have 
nonnegative discriminant:

	 99!2a2
k+1 ≥ 2∙98!∙100!akak+2

	 which simplifies to
	 99!2a2

k+1 ≥ 200akak+2
	 This holds for all k, so multiplying these as k 

varies, we obtain

	

100 100
101 2 101 2

0 0
99 200 ,i i

i i

a a
= =

≥∏ ∏

	 which is impossible since 99 < 200.
	 Solution 4. Choose k so that ak+1 is minimal. 

As before, consider the polynomial
	 akx

100 + ak+1x99 + ak+2x98 + ... + 100ak+99x + 
ak+100
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	 and suppose its roots are b1,...., b100. We have, 
by Vieta’s relations,

	

100
1 2

1 1
, .k k

i i j
k ki i j n

a a

a a
+ +

= ≤ < ≤
β = − β β =∑ ∑

	 However, we note that	
2100 100

2

1 1 1 1
2 2 ,i i i j i j

i i i j n i j n= = ≤ < ≤ ≤ < ≤

 
β = β + β β ≥ β β 

 
∑ ∑ ∑ ∑

	 which yields

	

2
1 22

.k k

k k

a a

a a
+ + 

− ≥  

	 This simplifies to 2
1 22 .k k ka a a+ +≥  However, 

by the choice of k, we have

	
2

1 2 22 ,k k k k ka a a a a+ + +≤ <

	 a contradiction.
3.	 Solution 1. We claim that the only possible 

values of c are k + 
1
2 for some non-negative 

integer k. The fact that these values are 
possible is seen from the function f (x)  

= 
1 1 1.
2 2

x
k kx

    + + = + +        
 Indeed, if you 

have any x, a ∈ , then

	

(x a) f(x) 1
2 2

f x a x
ka

a a

+ −  +    = + −        

			 

1 .
2 2

x a x
k

a

 +    = + −        

	 This is clearly an integer for a = 1. But for  
a ≥ 2, we have

	

2 1.
2 2 2 2

x a x x x+ +       − ≥ − =              

	 If a = 2k, then

	
2 ,

2 2
x a x

k k a
+   − = < =      

	 and if a = 2k + 1 for k ≥ 1, then

	

2 2
2 2 2 2

1 2 1 .

x a x x k x

k k a

+ + +       − ≤ −              
= + < + =

	 So in either case, the quantity 2 2
x a x+   −      

 

is strictly between 0 and a, and thus cannot 
be divisible by a. Thus condition (a) holds; 
condition (b) is obviously true.

		  Now let us show these are the only 
possible values, under the weaker assumption 
that there exists some d ∈  so that |f (x) – cx|  
< d. It is clear that c ≥ 0: if – d < f (x) – cx < 
d and c < 0, then for large x the range [cx – d, 
cx + d] consists only of negative numbers and 
cannot contain f (x).

		  Now we claim that c ≥ 1
2

 Indeed, suppose 

that 0 ≤ c < 1
2

, and that d > 0 is such that | f 

(x) – cx| ≤ d. Pick N > 2
1 2

d

c−
 so that 2(cN + d) 

< N. Then the N values {f (1), ..., f (N)} must 
be all be in the range {1, ..., cN + d}, and by 
pigeonhole principle, some three values f (i), f 
(j), f (k) must be equal. Some two of i, j, k are 
not consecutive: suppose WLOG i > j + 1. Then 

( ) ( ) 0f i f j

i j

−
=

−
, which contradicts condition 

(a) for x = j and a = i – j.
	 Now for the general case, suppose c = k + l, 

where k ∈  and  l∈ [0, 1). Let d ∈  be such 
that – d ≤ f (x) – cx ≤ d. Consider the functions

	 g1(x) = f (x) – kx + d + 1, g2(x) = x – f (x) + kx 
+ d + 1:

	 Note that
	 g1(x) ≥ cx – d – kx + d + 1 = lx + 1 ≥ 1,
	 g2(x) ≥ x – (cx + d) + kx + d + 1 = (1 –  l)x + 1 

≥ 1
	 so that these are also functions from  to . 

They also satisfy condition (a) for f :

	
1 1( ) ( )g x a g x

a

+ −

	

( ) ( ) ( )f x a k x a d f x kx d

a

− − + + − + −
=

	

( ) ( )f x a f x
k

a

+ −
= −
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	 is an integer if and only if 
( ) ( )f x a f x

a

+ −
 is, 

which happens if and only if a = 1. A similar 
argument holds for g2.

	 Now note that g1(x) – lx = f (x) – cx + d + 1 
is bounded, and so is g2(x) – (1 – l)x = cx – f 
(x) + d + 1. So they satisfy the weaker form 
of condition (b) as well. Thus applying the 
reasoning in the second paragraph, we see that 

l ≥ 
1
2 and 1 – l ≥ 

1
2

. This  force l = 1
2

, which 

finishes our proof.
	 Solution 2. We will show that for any such  

c, we have c > 0 and {c} = 
1
2

. Also 2023 can 
be replaced by any fixed d ≥ 1 in condition (b) 
which we assume now.

		  Clearly c ≥ 0 else for c < 0 and x > | |
d

c
, cx 

– d < f (x) < cx + d < 0 which is a contradiction.

	 Suppose {c} ≠ 
1
2

. Put r = c   and l = min({c}, 

1 – {c}) and define

	

1if { }<( ) 2( )    
( ) 1if { }>

2

cf x rx
g x

x rx f x
c

−
=  + −

	 so that |f (x) – cx| = |g(x) – lx| and g(x) ∈  for 

all x ∈ . Here 0  ≤ l < 1
2

. Take N > 2(lN + 

2d). Then from |g(x) – lx| = |f (x) – cx| < d, we 
get

	 – d ≤ ln – d < g(n) < ln + d ≤ lN + d
	 for all 1 ≤ n ≤ N. That is N integers g(n),  

1 ≤ n ≤ N can take at most lN + 2d values. Since  
N > 2(lN + 2d), by pigeonhole principle, 
there are 3 positive integers i < j < k such that  
g(i) = g(j) = g(k). Then k – i ≥ 2 and

1( ) ( ( ) ) ( );  { }
( ) ( ) 2

(1 | ) ( ) ((1 ) ( )) (1 )( )
 

g k rk g i ri r k i if c
f k f i

r k g k x i g i r k i

 + − + = − <− = 
 − − + − = + −

			 
1   { }
2

if c >

	 so that ( ) ( )f k f i

k i

−
−

 is an integer. This 

contradicts the condition (a). Also for each  

c = k + 
1
2

, the function 
1( )
2

f x k x
  = +    

 

satisfy the conditions (a) and (b).
	 Solution 3. We give a different proof that  

{c} = 
1
2
. Let us first prove a claim:

	 Claim. For any k ≥ 1 and any x, f (x + 2k) – f (x) 
is divisible by 2k–1 but not 2k.

	 Proof. We prove this via induction on k. For 
k = 1, the claim is trivial. Now assume the 
statement is true for some k, and note that  
f (x + 2k) – f (x) = 2k–1y1 and f (x + 2k + 2k) –  
f (x + 2k) = 2k–1y2 for some odd integers y1, y2. 
Adding these, we see that

	 f (x + 2k+1) – f (x) = 2k–1(y1 + y2)
	 which is divisible by 2k because y1 + y2 is 

even. The fact that this is not divisible by 2k+1 
follows from the condition on f.

	 Now using this claim, we see that for any k ≥ 1, 
f (1+2k) = f (1) + 2k–1(2yk +1) for some integer 
yk, which means

	 f (1 + 2k) – c(1 + 2k) = f (1) – c + 2k 1 .
2

yk c
 + −  

	 Thus 2k(yk +
1
2

 – c) is bounded. But yk + 
1
2

 

– c has the same fractional part as 
1
2

 – c, so 

if this quantity is never zero, its absolute value 

must be at least m = min 
1 1,
2 2

c c
    − −        

 
and thus we have

	

12 2 ,
2

k kyk c m+ − ≥

	 contradicting boundedness. Thus we must have 

yk + 
1
2

 – c = 0 for some k. Since yk is an integer, 

so that {c} = 
1
2

.
	 A more rigorous treatment is given below
	 Obtain

	 f (1 + 2k) – c(1 + 2k) = f (1) – c – 2k 1
2ky c + − 

 
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	 as before. We obtain that 2k |yk + 
1
2  – c| ≤ M 

for some M > 0 by condition (b). Suppose that 

{c} ≠ 
1
2 . Writing yk +  

1
2  – c = mg + d with  

mk ∈  and 0 ≤ d < 1, we have 0 < d < 1. Then 

there exists l > 1 such that min (d, 1 – d) 1
2l

≥ .
	 Hence,

	
1| | |
2k ky c m+ − = + δ ≥

		

1                    if 02   
if 011

2

l
k

k
k l

m

m
m

 δ ≥ ≥
 <− − δ ≥ − δ ≥


	 implying M ≥ 2k|yk + 1
2

– c| ≥ 2k–l which is a 

contradiction for large k. Thus {c} = 
1
2

4.	 Solution 1. Calvin wins if k ∈ {1, 2, ..., N + 1} 
and Hobbes wins otherwise.

	 Label the coins 1, 2, ..., 2N + 1. Note that if 
k ≥ N + 2 then Hobbes wins as follows: he 
pairs the coins 2i – 1 and 2i for 1 ≤ i ≤ N. If 
Calvin in a move makes both coins in a pair 
tails, Hobbes in that move turns the one which 
was tails prior to Calvin’s move back to heads. 
Thus, he can ensure that after his move, no pair 
has more than one tails. So, the number of tails 

after his move is ≤ 1 + 
(2 1) 1

2
N + −

  = N + 1, 

hence Hobbes wins. If k ≤ N, then Calvin wins 
by simply turning coins 2i for 1 ≤ i ≤ N. Now 
let k = N + 1.

	 Let N = 2m + e where e ∈ {0, 1}. Now consider 
m arcs on the circle with the ith arc containing 
{4i +1, 4i + 2, 4i + 3, 4i + 4}, for all 0 ≤ i < m. 
Calvin makes 3m moves as follows: on move  
3i + 1, 3i + 2, and 3i + 3, he turns coins numbered 
4i + 2, 4i + 4, and 4i + 3, respectively, to tails, 
for all 0 ≤ i < m. Thus, no matter what Hobbes 
does, each arc will have either {4i + 2, 4i + 3} 
tails (type �23 ), or {4i + 3, 4i + 4} tails (type 
�34 ), or all of {4i + 2, 4i + 3, 4i + 4} tails (type 
�234 ), by the end of these 3m moves. We now 

split into cases:

	 Case 1. e = 0 In this case, if we have any arc of 
type �234 , we get that there are ≥3 + 2(m – 1) 
= N + 1 tails at the end and the game is won. 
Assume all arcs are of type �23  or �34 ; hence 
we currently have 2m tails. Now, if 4m + 1 has 
no tails neighbours, Calvin turns it to win. So 
assume the arc {4m – 3, 4m – 2, 4m – 1, 4m} 
is of type �34 . If {1, 2, 3, 4} is also of type �34 , 
Calvin can turn 1 to tails to win as it has no 
tails neighbours. If it is of type �23 , then we 
must have an 0 ≤ i < m – 1 such that the ith arc 
is of type �23  but the (i + 1)th arc is of type �34 , 
which means that Calvin can turn 4i + 1 to tails 
to win, as it has no tails neighbours.

	 Case 2. e = 1 Again, if we have any arc of type 
�234 , Calvin turns 4m + 2 and we end up with 

≥ 3 + 2(m – 1) + 1 = N + 1 tails at the end and 
the game is won. Assume all arcs are of type 
�23  or �34 ; hence we currently have 2m tails. If 
Calvin can turn 4m +1, then he wins, by turning 
4m + 3 next move; so assume the arc {4m – 3, 
4m – 2, 4m – 1, 4m} is of type �34 . If {1, 2, 3, 
4} is of type �34 , then Calvin can turn 1 and 
4m + 2 to secure his win; so assume {1, 2, 3, 
4} is of type �23 . Thus, there exists 0 ≤ i < m 
– 1 such that the ith arc is of type �23  and the 
(i + 1)th arc is of type �34 , hence Calvin wins 
by turning 4m + 2 and 4i + 1, in the next two 
moves.

	 In conclusion, Calvin wins if k = N + 1, 
completing the proof.

	 Again, we include some remarkable alternative 
solutions that were brought to our attention.

	 Solution 2. As before, we can prove that 
Hobbes wins for k ≥ N + 2. It remains to show 
that Calvin can win for k = N + 1.

		  Let Calvin turn the N coins labeled 1, 
3, ..., 2N – 1 in order. Note that no two coins 
showing tails are adjacent at any point till now, 
so Hobbes cannot change any of them back to 
heads. On the next move, let Calvin turn coin 
2 to tails. Now if Hobbes turns coin 1 to heads, 
Calvin can turn coin 2N + 1 to tails and win. 
If Hobbes turns coin 3 to heads instead, let 
Calvin turn the even-numbered coins 4, 6, ..., 
2N – 2 in order. After Calvin flips the coin 2k, 
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Hobbes must respond by flipping 2k + 1 after 
each move to avoid losing. Therefore after 
these moves, the N coins 1, 2, 4, ..., 2N –2 are 
showing tails, so now Calvin can turn 2N and 
win.

	 Solution 3. Again we show a procedure for 
Calvin to win for k = N + 1. Let Calvin turn 
coins 1 and 3 tails, and then coin 2 to tails. 
Hobbes must respond by turning one of 1 or 3 
back to heads. In any case, Calvin secures two 
consecutive tails at the end of Hobbes’ turn. He 
removes these two coins and their neighbours; 
and from the (2N +1) – 4 = 2N –3 remaining 

coins, he turns 1
2

(2N – 3 + 1) = N –1 of them 

tails by alternately flipping them. Hobbes never 
gets to make a move to stop this sequence, so 
Calvin wins.

5.	 Solution 1. We first prove that the Gauss writes 
down at most n even numbers.

		  For each even number 2k that Gauss 
writes down, choose a single pair of points 
whose distance d satisfies 22k ≤ d < 22k+1. 
Connect these points with a red edge. We claim 
there cannot be a cycle {of length m, 3 ≤ m ≤ 
n}: indeed, if the edges corresponding to the 
distinct even integers 2k1, ..., 2km, 2km+1 form 
a cycle in that order, then assume without loss 
of generality that 2km+1 is the largest among 
these, and 2ki is the largest among the rest. The 
sum of distances for the first m edges is at most

	
1 2 1 2 12 1 2 42 ... 2 2 (1 2 2 ...)m ik kk + ++ − −+ + ≤ + + +

			 

1

2 1
2 2 2

2

2 2 2 ,11
2

i

i m

k
k k +

+
+≤ < ≤

−

	 i.e., less than the distance corresponding to the 
last edge: a contradiction to triangle inequality. 
So there are at most n – 1 red edges.

	 This implies that Gauss only writes at most  
n – 1 even numbers, and similarly at most n – 1 
odd numbers. Thus, Gauss writes down at most 
2n – 2 numbers in total.

	 Solution 2. Given a pair of points with distance 
d, we say their log-distance is 2log d   . 
By dilating by a suitable power of 2, we can 
assume all log-distances are positive and the 
smallest one of them is 1. Define a sequence 

of graphs G0,G1,G2, ... as follows: Gk has the 
n points as vertices, and two points are joined 
by an edge in it if and only if their log-distance 
is at most k. In particular, G0 is a graph with n 
vertices and no edges.

	 	 Now we define a second sequence of 
graphs H0,H1,H2, ...  with Hi being a subgraph 
of Gi inductively as follows. We let H0 be the 
same as G0 and H1 by adding an edge with log-
distance 1. Now once we have defined Hk–1, Hk 
is obtained from it as follows:

	 •	 If Hk–1 is a disjoint union of cliques, 
choose a pair of points with log-distance k, and 
add the edge between them to Hk–1 to form Hk: 
such an index k will be called clique-destroyer. 
If no such pair exists, let Hk = Hk–1: in this 
case, the index k will be called empty.

	 •	 If not, then Hk–1 was obtained by adding 
one edge between cliques C1 and C2 in Hk–2  
⊆ Gk–2. We claim that all edges between C1 
and C2 are in Gk. Indeed, if suppose the edge 
was added between points A1 ∈ C1 and A2 ∈ 
C2. Take any point B1 ∈ C1 and B2 ∈ C2. By 
assumption, B1A1 and B2A2 are edges in Gk–2 
and A1A2 is an edge in Gk–1, so |B1A1| < 2k–1, 
|B2A2| < 2k–1, and |A1A2| < 2k, so by triangle 
inequality,

	 |B1B2| < 2k–1 + 2k–1 + 2k = 2k+1,
	 which proves our claim. Now to form Hk, we 

take Hk–1 and add all edges between C1 and 
C2: this yields a disjoint union of cliques. This 
index k will be called clique-restorer.

	 	 Now for every clique-destroyer index k, 
either Hk is again a disjoint union of cliques 
with one fewer clique than Hk–1, or it is 
followed by a clique-restorer index k + 1 (as 
we add all the missing edges between some 
two disjoint cliques C1 and C2 connected by an 
edge), and Hk+1 is a disjoint union of cliques 
with one fewer clique than Hk–1. Initially, 
H0 has n cliques and the chain stops once Hk 
becomes a single clique on n vertices. There 
can be at most 2(n – 1) indices that are one 
of the above two types. However, the empty 
indices correspond to values of k that do not 
occur as a log-distance: therefore the number 
of distinct values of log-distance is at most 
the number of non-empty indices, i.e., at most  
2n – 2 as desired.
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6.	 Solution 1. We begin by proving a series of 
lemmas.

	 Lemma 1. Given a non-right angled triangle 
ABC, we can draw the nine-point circle and 
mark the orthocentre H using only a cyclos.

	 Proof. Draw circles (BC), (CA), (AB) and 
mark their intersections to get the three feet of 
altitudes D, E, F opposite A, B, C. Now draw 
the circle (DEF) to get the nine-point circle. 
Draw (BDF), (CDE), (AEF) and they meet at 
H, which we can also mark.

	 Lemma 2. Given points A, B, we can mark the 
midpoint M of AB using only a cyclos.

	 Proof. Draw the circle (AB) and choose a point 
X on it. Draw circles (XA); (XB) and mark their 
intersection Y. Now mark a point Z on the circle 
(XA) apart from the marked points. Clearly, Z 
does not lie on AB nor on (AB), hence we can 
draw (AZB). Mark five points Z1, ..., Z5 on this 
circle, each different from all previous points 
and verify if either A lies on (ZiB) or B lies on 
(ZiA) for each 1 ≤ i ≤ 5 before marking the new 
point. By pigeonhole principle, for some three 
indices i, j, k, the three triangles AZiB are non-
right angled, hence we can draw their ninepoint 
circles by Lemma 1. All of them pass through 
M, and their centres are not collinear, else 
homothety at the centre of (ABZ) implies the 
orthocentres of the three triangles are collinear; 
but they all lie on the reflection of (AZB) in AB, 
a contradiction! Thus, these three nine-point 
circles meet at only M, and we mark this point.

	 Lemma 3. Given points A,B,C,D on the plane in 
general position, we can mark the intersection 
point E of lines AB and CD using only a cyclos.

	 Proof. Draw (AB) and mark five points on it, 
all different from previously marked points. 
For each marked point X; draw (CX) and (DX) 
and check whether they have an intersection 
apart from X (i.e., if they are tangent, or if X 
lies on CD). We can find three points X1, X2, 
X3 among them not lying on CD. Denote by Yi 
the second intersection of (AXi), (BXi) and by 
Zi the second intersection of (CXi), (DXi) and 
mark them, for each 1 ≤ i ≤ 3. Draw the circles 
(XiYiZi) and note that they all pass through E 
and have diameters EXi for all i; so they are not 
coaxial as X1, X2, X3 are not collinear; all lying 

on (AB). Thus we mark E as the unique point 
common to them all. (Note: if C, D lie on (AB), 
we can pick a point T on it other than these 
four, then a point X on (AT), and continue the 
same argument again, avoiding all edge cases.)

	 Lemma 4. Given a circle G, we can mark the 
centre of G using only a cyclos.

	 Proof. Mark points A, B, C ∈ G and mark 
the midpoints of BC, CA, AB to get A1, B1, 
C1 according to Lemma 2. Draw the circles 
(AB1C1), (BA1C1), (CB1A1) and mark the 
intersection to get the centre of G.

	 Lemma 5. Given a circle G and point A on G, 
we can mark a point K such that line AK is 
tangent to G using only a cyclos.

	 Proof. Mark points B1, B2, B3 and C on G. 
By Lemma 4, mark the point O, the centre 
of G. Draw (BiO) and (AOC) and mark the 
intersection denoted Fi; there exists an index 
j for which Fj ≠ O; mark the point K which is 
the intersection of BjFj and OM where M is the 
midpoint of AC (which we mark by Lemma 2) 
by Lemma 3. Clearly, K lies on A tangent to G. 
Note that we can do this again to get multiple 
such points K by choosing different C each 
time.

	 Lemma 6. Given a circle G and a point A on G, 
and a point B not on G, we can mark the point C 
which is the second intersection of line AB and 
G using only a cyclos.

	 Proof. Mark the foot of perpendicular M from 
O onto line AB as done in Lemma 1. Mark the 
intersection of line OM and AK by Lemma 3, 
where K is a point on the A-tangent to G as 
constructed in Lemma 5. Draw (OAK) and 
mark the second intersection with G to obtain 
C.

	 Lemma 7. Given points A, B, C not all on a 
line, we can draw the reflection of A in BC 
using only a cyclos.

	 Proof. Draw (ABC) and mark the orthocentre 
H of ABC by Lemma 1. Mark the intersection 
A’ of line AH with (BHC) using Lemma 6, 
which is the A-reflection in line BC.

	 Lemma 8. Given points A, B, we can mark the 
point C which is the reflection of A in B using 
only a cyclos.
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	 Proof. Draw (AB), and by Lemma 6, mark two 
points K1, K2 such that BKi is tangent to (AB) 
for i ∈ {1, 2}. By Lemma 7, mark the reflection 
C of A in line K1K2 as desired.

		  Thus, a cyclos can do everything a 
compass can: to draw a circle with given centre 
A and given radius B, we use Lemma 8 to mark 
the reflection C of B in A and use the cyclos 
to draw (BC) which has centre A and passes 
through B.

	 Solution 2. After deriving the first two lemmas 
in the previous solution, one can proceed as 
follows: Let C denote the point such that A is 
the midpoint of CB.

	 Choose a generic point X. We can get the 
midpoint M of BX and the foot of perpendicular 
D from X to AB. Draw the circle passing 
through A, D and M. This is the nine-point 
of circle of triangle CBX. Intersect this circle 
with the circle whose diameter is BX. The 
intersection point other than D is the foot of 
perpendicular E from B to CX. Note that |AE| = 
|AB|. Similarly, we can construct another point 
F such that |AF| = |AB|. The circle through B, E 
and F is the required circle.


