CHEMISTRY **CLASS-XII** REVISION CHIDAT SHIDD

PHYSICAL CHEMISTRY

CHEMICAL KINETICS

BOOK-XII

OXYGEN FAMILY

- Melting and boiling point of hydrides :
 - $H_2O > H_2Te > H_2Se > H_2S$
- Volatility of hydrides: $H_2O < H_2Te < H_2Se < H_2S$
- Reducing nature of hydrides : $H_2S < H_2Se < H_2Te$
- Covalent character of hydrides : $H_2O < H_2S < H_2Se < H_2Te$
- The acidic character of oxides (elements in the same oxidation state) $SO_2 > SeO_2 > TeO_2 > PoO_2$; $SO_3 > SeO_3 > TeO_3$
- Acidic character of oxide of a particular element (e.g. S) SO < SO₂ < SO₃; SO₂ > TeO₂ > SeO₂ > PoO₂

HALOGEN FAMILY

- Bond energy of halogens : $Cl_2 > Br_2 > F_2 > I_2$
- Solubility of halogen in water : $F_2 > Cl_2 > Br_2 > I_2$
- Oxidising power : $F_2 > Cl_2 > Br_2 > I_2$
- Enthalpy of hydration of X^- ion : $F^- > CI^- > Br^- > I^-$
- Reactivity of halogens : F > Cl > Br > I
- Ionic character of M X bond in halides M-F > M-Cl > M-Br > M-I
- Reducing character of X^- ion : $I^- > Br^- > Cl^- > F^-$
- Acidic strength of halogen acids : HI > HBr > HCl > HF
- Conjugate base strength of halogen acids: I⁻ < Br⁻ < Cl⁻ < F⁻
 - Reducing property of hydrogen halides : HF < HCl < HBr < HI
- > Oxidising power of oxides of chlorine

 $Cl_2O > ClO_2 > Cl_2O_6 > Cl_2O_7$

TRANSITION ELEMENTS (d- and f-BLOCK ELEMENTS

 The element with exceptional configuration are Cr²⁴[Ar] 3d⁵4s¹, Cu²⁹[Ar] 3d¹⁰4s¹
 Mo⁴²[Kr] 4d⁵5s¹, Pd⁴⁶[Kr] 4d¹⁰5s⁰ Ag⁴⁷[Kr] 4d¹⁰5s¹, Pt⁷⁸[Xe] 4f¹⁴5d¹⁰6s⁰

- Inner Transition Elements
 - (i) Electronic Configuration $[Xe]4f^{0-14}5d^{0-1}6s^2$

(ii) **Magnetic properties -** Magnetic moment is given by the formula $\mu = \sqrt{4S(S+1) + L(L+1)}$ where L=Orbital quantum

number, S = Spin quantum number

COORDINATION COMPOUNDS

- Coordination number is the number of the nearest atoms or groups in the coordination sphere.
- Ligand is a Lewis base donor of electrons that bonds to a central metal atom in a coordination compound.
- Paramagnetic substance is one that is attracted to the magnetic field, this results on account of unpaired electrons present in the atom/molecule/ion.
- Factors affecting stability of complex
 - (i) Greater the charge on the central metal ion, greater is the stability.
 - (ii) Greater the ability of the ligand to donate electron pair (basic strength) greater is the stability.
 - (iii) Formation of chelate rings increases the stability.
- Isomerism in coordination compounds :
- (i) Structural Isomerism (ii) Ionization Isomerism
 - Hydration Isomerism (iv) Linkage Isomerism
 - (v) Polymerisation Isomerism (vi) Valence Isomerism
- (vii) Coordination Position Isomerism
- (viii) Stereo Isomerism

(iii)

- (a) Geometrical Isomerism
- (1) Square planar complexes of the type MA₂X₂; MABX₂; MABXY
- (2) Octahedral of the type : MA_4XY , MA_4X_2 , MA_3X_3 $MA_2X_2Y_2$. $M(AA)_2X_2$ and M(ABCDEF).
- (b) Optical isomerism : Shown by the compounds that are mirror images and cannot be superimposed on one another.

BOOK-XII

CHEMISTRY

CARBOXYLIC ACIDS

The rate of esterfication decreases when alcohol, acid or both have branched substituents.

 Ortho effect : All ortho substituted benzoic acids (irrespective of type of substituent) are stronger than benzoic acid.

NITROGEN COMPOUNDS

Order of basicity :

 $(R = -CH_3 \text{ or } -C_2H_5) 2^\circ > 1^\circ > 3^\circ > NH_3$

Hoffmann degradation

Amides $\xrightarrow{\text{Br}_2/\text{KOH}}$ 1° amine

- The basicity of amines is (i) decreased by electron with drawing groups (ii) increased by electron releasing groups
- Reduction of nitrobenzene in different media gives different products

Medium	Product	
Acidic	Aniline	
Basic	Azoxy, Azo and	finally hydrazobenzene
Neutral	Phenyl hydroxy	lamine

BIOMOLECULES

- Carbohydrates are polyhydroxy aldehydes or ketones.
- Monosaccharides are simple sugars, containing three to nine carbon atoms.

IDENTIFICATION TESTS

Unsaturated compound (Bayer's reagent)
 Decolourising the reagent

- Alcohols (Ceric ammonium nitrate solution)
 Red colouration
- Phenols (Neutral FeCl₃ solution)
 Violet/deep blue colouration
- Aldehydes and ketones (2, 4-D.N.P.) Orange precipitate
- Acids (NaHCO₃ solution) \land
 - Brisk effervescence (CO_2 is evolved)
- harphi 1° amine (CHCl₃ + KOH)
 - Foul smell (isocyanide)
 - 2° amine (NaNO₂ + HCl)
 Yellow oily liquid (Nitrosoamine)

CHARACTERISTIC REACTIONS

	Homologous series	Type of reactions	
	(i) Alkanes	Substitution	
		Mostly free radical	
	(ii) Alkenes and alkynes	Electrophillic addition	
	(iii) Arenes	Electrophillic substitution	
	(iv) Alkyl halides	Nucleophillic substitution	
	(v) Aldehyde and ketones	Nucleophillic addition	
	Tests to differentiate :		
	1°, 2° and 3° alcohols	(i) Lucas test	
		(ii) Victor meyer's test	
	1°, 2° and 3° amines	Hinsberg test	
	10 00 100 1		

1°, 2° and 3° nitro compounds Test with HNO₂ and KOH
Aryl halides and alkyl halides Test with AgNO₃ solution
Aldehydes and ketones Tollen's test/Fehling's test
Aromatic aldehydes and Fehling's test