MATHEMATICS CLASS-XII REVISION CHEAT SHEET

RELATIONS AND FUNCTIONS A relation R from a set A to a set B is a subset of the cartesian product A × B obtained by describing a relationship between the first element x and the second element y of the ordered pairs in $A \times B$. Function : A function f from a set A to a set B is a specific type of relation for which every element x of set A has one and only one image y in set B. We write $f: A \rightarrow B$, where f(x)= y. A function $f: X \rightarrow Y$ is one-one (or injective) if $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2 \forall x_1, x_2 \in X.$ A function $f: X \rightarrow Y$ is onto (or surjective) if given any • cos $y \in Y, \exists x \in X$ such that Range = codomain. **Many-One Function :** A function $f : A \rightarrow B$ is called many- one, if two or more different elements of A have the same f- image in B. Into function : A function $f: A \rightarrow B$ is into if there exist at least one element in B which is not the f - image of any element in A. Many One -Onto function : A function $f: A \rightarrow R$ is said to be many one- onto if f is onto but not one-one. Many One -Into function : A function is said to be many one-into if it is neither one-one nor onto. A function $f: X \rightarrow Y$ is invertible if and only if f is one-one and onto. **INVERSE TRIGONOMETRIC** FUNCTIONS Properties of inverse trigonometric function $\begin{bmatrix} 1 \\ x+y \end{bmatrix}$

•
$$\tan^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1} \left(\frac{x + y}{1 - xy}\right), & \text{if } xy < 1 \\ \pi + \tan^{-1} \left(\frac{x + y}{1 - xy}\right), & \text{if } x > 0, y > 0 \\ -\pi + \tan^{-1} \left(\frac{x + y}{1 - xy}\right), & \text{and } xy > 1 \end{cases}$$

$$\begin{array}{l} tan^{-1} x - tan^{-1} y = \begin{cases} tan^{-1} \left(\frac{x - y}{1 + xy} \right) &, & \mbox{if } xy > -1 \\ \pi + tan^{-1} \left(\frac{x - y}{1 + xy} \right) &, & \mbox{if } x > 0, y < 0 \mbox{ and } xy < -1 \\ -\pi + tan^{-1} \left(\frac{x - y}{1 + xy} \right) &, & \mbox{if } x < 0, y > 0 \mbox{ and } xy < -1 \end{cases}$$

$$\sin^{-1}\{x\sqrt{1-y^{2}} + y\sqrt{1-x^{2}}\}, \qquad \begin{array}{l} \text{if } -1 \le x, \ y \le 1 \ \text{and} \ x^{2} + y^{2} \le 1 \\ \text{or if } xy < 0 \ \text{and} \ x^{2} + y^{2} > 1 \end{array}$$

$$\pi - \sin^{-1}\{x\sqrt{1-y^{2}} + y\sqrt{1-x^{2}}\}, \qquad \begin{array}{l} \text{if } 0 < x, \ y \le 1 \\ \text{and} \ x^{2} + y^{2} > 1 \end{array}$$

$$-\pi - \sin^{-1}\{x\sqrt{1-y^{2}} + y\sqrt{1-x^{2}}\}, \quad \text{if } -1 \le x, \ y < 0 \ \text{and} \ x^{2} + y^{2} > 1 \end{array}$$

$$-1$$
 $\left(\frac{1}{1-2} \sqrt{1-2} \right)$

$$\begin{cases} \cos^{-1}\{xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\} &, \text{ if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \\ 2\pi - \cos^{-1}\{xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\}, & \text{ if } -1 \le x, y \le 1 \text{ and } x + y \le 0 \end{cases}$$

$$2\sin^{-1}x = \begin{cases} \sin^{-1}(2x\sqrt{1-x^2}) &, \text{ if } -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} \\ \pi - \sin^{-1}(2x\sqrt{1-x^2}) &, \text{ if } \frac{1}{\sqrt{2}} \le x \le 1 \\ -\pi - \sin^{-1}(2x\sqrt{1-x^2}) &, \text{ if } -1 \le x \le -\frac{1}{\sqrt{2}} \end{cases}$$
$$2\tan^{-1}x = \begin{cases} \tan^{-1}\left(\frac{2x}{1-x^2}\right) &, \text{ if } -1 \le x \le 1 \\ \pi + \tan^{-1}\left(\frac{2x}{1-x^2}\right) &, \text{ if } x > 1 \\ -\pi + \tan^{-1}\left(\frac{2x}{1-x^2}\right) &, \text{ if } x < -1 \end{cases}$$

THREE DIMENSIONAL GEOMETRY

Conditions of Parallelism and Perpendicularity of Two Lines:

Case-I: When dc's of two lines AB and CD, say ℓ_1 , m_1 , n_1 and ℓ_2 , m_2 , n_2 are known.

$$AB \mid\mid CD \Leftrightarrow \frac{\ell_1}{\ell_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$
$$AB \perp CD \Leftrightarrow \ell_1 \ell_2 + m_1 m_2 + n_1 n_2 = 0$$

MATHEMATICS

Case-II: When dr's of two lines AB and CD, say a_1 , $b_1 c_1$ and a_2, b_2, c_2 are known

$$AB \mid \mid CD \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

 $AB \perp CD \Leftrightarrow a_1a_2 + b_1b_2 + c_1c_2 = 0$

If ℓ_1 , m_1 , n_1 and ℓ_2 , m_2 , n_2 are the direction cosines of two lines; and θ is the acute angle between the two lines; then $\cos \theta = |\ell_1 \ell_2 + m_1 m_2 + n_1 n_2|.$

Equation of a line through a point (x_1, y_1, z_1) and having

direction cosines ℓ , m, n is $\frac{x - x_1}{\ell} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$

Shortest distance between $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$

is
$$\frac{|(\vec{b}_1 \times \vec{b}_2).(\vec{a}_2 - \vec{a}_1)|}{|\vec{b}_1 \times \vec{b}_2|}$$

DIFFERENTIAL CALCULUS

Existence of Limit :

 $\lim_{x \to a} f(x) \text{ exists} \Rightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = \ell$ Where ℓ is called the limit of the function

- (i) If $f(x) \le g(x)$ for every x in the deleted nbd of a, then $\lim f(x) \le \lim g(x)$
 - $x \rightarrow a$ $x \rightarrow a$ If $f(x) \le g(x) \le h(x)$ for every x in the deleted nbd of a (ii) and $\lim_{x \to \infty} f(x) = \ell = \lim_{x \to \infty} h(x)$ then $\lim_{x \to \infty} g(x) = \ell$ $x \rightarrow a$
 - $\lim_{x \to a} \log(x) = f\left(\lim_{x \to a} g(x)\right) = f(m) \text{ where } \lim_{x \to a} g(x) = m$ (iii)
 - (iv) If $\lim_{x \to a} f(x) = +\infty \text{ or } -\infty$, then $\lim_{x \to a} \frac{1}{f(x)} = 0$
- **CONTINUITY AND DIFFERENTIABILITY OFFUNCTIONS** A function f(x) is said to be continuous at a point x = a if $\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = f(a)$

$x \rightarrow a^+$ x→a[−] **Discontinuous Functions :**

Removable Discontinuity: A function f is said to have **(a)**

removable discontinuity at x = a if $\lim_{x \to a} f(x) = \lim_{x \to a} f(x)$ x→a[−] x→a⁺ but their common value is not equal to f(a).

Discontinuity of the first kind: A function f is said to **(b)** have a discontinuity of the first kind at x = a if

> $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$ both exist but are not equal. $x \rightarrow a^+$ $\rightarrow a^{-}$

Discontinuity of second kind: A function f is said to (c) have a discontinuity of the second kind at x = a if neither $\lim_{x \to \infty} f(x)$ nor $\lim_{x \to \infty} f(x)$ exists. $x \rightarrow a^+$ x→a[−]

Similarly, if $\lim_{x \to \infty} f(x)$ does not exist, then f is said to have discontinuity of the second kind from the right at x = a.

For a function f :

Differentiability \Rightarrow Continuity; Continuity \Rightarrow derivability Not derivibaliity \Rightarrow discontinuous ; But discontinuity \Rightarrow Non derivability

Differentiation of infinite series:

(i) If
$$y = \sqrt{f(x) + \sqrt{f(x) + \sqrt{f(x) + \dots \dots \infty}}}$$

$$\Rightarrow \qquad y = \sqrt{f(x) + y} \Rightarrow y^2 = f(x) + y$$

$$2y \frac{dy}{dx} = f'(x) + \frac{dy}{dx} \qquad \therefore \qquad \frac{dy}{dx} = \frac{f'(x)}{2y - 1}$$
(ii) If $y = f(x)^{f(x)^{f(x)^{\dots,\infty}}}$ then $y = f(x)^y$.

$$\therefore \qquad \log y = y \log [f(x)]$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{y \cdot f'(x)}{f(x)} + \log f(x) \cdot \left(\frac{dy}{dx}\right)$$

$$\therefore \qquad \frac{dy}{dx} = \frac{y^2 f'(x)}{f(x)[1 - y \log f(x)]}$$
(iii) If $y = f(x) + \frac{1}{f(x)}$ then $\frac{dy}{dx} = \frac{y f'(x)}{2y - f(x)}$

DIFFERENTIATION AND APPLICATION

 $f(x)_{+}$

Interpretation of the Derivative : If y = f(x) then, $\frac{dy}{dx} = f'(x)$

is rate of change of y with respect to x.

Increasing/Decreasing :

- (i) If f'(x) > 0 for all x in an interval I then f(x) is increasing on the interval I.
- (ii) If f'(x) < 0 for all x in an interval I then f(x) is decreasing on the interval I.
- (iii) If f'(x) = 0 for all x in an interval I then f(x) is constant on the interval I.

Test of Local Maxima and Minima -

First Derivative Test-Let fbe a differentiable function defined on an open interval I and $c \in I$ be any point. f has a local maxima or a local minima at x = c, f'(c) = 0.

Put $\frac{dy}{dx} = 0$ and solve this equation for x. Let c_1, c_2, \dots, c_n be the roots of this.

If $\frac{dy}{dx}$ changes sign from +ve to -ve as x increases through

 c_1 then the function attains a local max at $x = c_1$

BOOK-XII

If $\frac{dy}{dx}$ changes its sign from -ve to +ve as x increases through

 c_1 then the function attains a local minimum at $x = c_1$

If $\frac{dy}{dx}$ does not changes sign as x increases through c_1 then $x = c_1$ is neither a point of local max^m nor a point of local min^m. In this case x is a point of inflexion.

Rate of change of variable :

The value of $\frac{dy}{dx}$ at $x = x_0 i.e. \left(\frac{dy}{dx}\right)_{\substack{x=x_0 \\ x=x_0}}$ represents the rate of change of y with respect to x at $x = x_0$

If $x = \phi(t)$ and $y = \psi(t)$, then $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$, provided that $\frac{dx}{dt} \neq 0$ Thus, the rate of change of y with respect to x can be calculated by using the rate of change of y and that of x each with respect to t.

INTEGRAL CALCULUS AND APPLICATIONS

Two standard forms of integral :

 $\int e^x [f(x) + f'(x) dx = e^x f(x) + c$ $\Rightarrow \int e^x [f(x) + f'(x)] dx = \int e^x f(x) dx + \int e^x f'(x) dx$ $= e^x f(x) - \int e^x f'(x) dx + \int e^x f'(x)$

(on integrating by parts) = $e^x f(x) + c$ Table shows the partial fractions corresponding to different type of rational functions : **S.** Form of rational Form of partial

No. function fraction 1. $\frac{px+q}{(x-a)(x-b)}$ $\frac{A}{(x-a)} + \frac{B}{(x-b)}$ 2. $\frac{px^2 + qx + r}{(x-a)^2(x-b)}$ $\frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-b)}$

3.
$$\frac{px + qx + r}{(x-a)(x^2 + bx + c)}$$
 $\frac{A}{(x-a)} + \frac{Bx + C}{x^2 + bx + c}$

Area between curves :

$$y = f(x) \Rightarrow A = \int_{a}^{b} [upper function] - [lower function] dx$$

and $x = f(y) \Rightarrow A = \int_{c}^{d} [right function] - [left function] dy$

If the curves intersect then the area of each portion must be found individually.

Symmetrical area : If the curve is symmetrical about a coordinate axis (or a line or origin), then we find the area of one symmetrical portion and multiply it by the number of symmetrical portion to get the required area.

PROBABILITY

Probability of an event: For a finite sample space with equally likely outcomes Probability of an event is

 $P(A) = \frac{n(A)}{n(S)}$, where n (A) = number of elements of an event

A, n(S) = Total number of sample space.

Theorem of total probability : Let $\{E_1, E_2, ..., E_n\}$ be a partition of a sample spaces S and suppose that each of $E_1, E_2, ..., E_n$ has nonzero probability. Let A be any event associated with S, then

 $P(A) = P(E_1) P(A | E_1) + P(E_2) P(A | E_2) + ...$

 $+ P(E_n) P(A | E_n)$

Bayes' theorem: If $E_1, E_2, ..., E_n$ are events which constitute a partition of sample space S, i.e. $E_1, E_2, ..., E_n$ are pairwise disjoint and $E_1 \cup E_2 \cup ... \cup E_n = S$ and A be any event with nonzero probability, then

$$P(E_{i} | A) = \frac{P(E_{i}) P(A | E_{i})}{\sum_{i=1}^{n} P(E_{j}) P(A | E_{j})}$$

Let X be a random variable whose possible values x_1, x_2, x_3 , ..., x_n occur with probabilities $p_1, p_2, p_3, ..., p_n$ respectively.

The mean of X, denoted by μ , is the number $\sum_{i=1}^{n} x_i p_i$

The mean of a random variable X is also called the expectation of X, denoted by E(X).

MATRICES

> Properties of Transpose

(i) $(A^T)^T = A$ (ii) $(A \pm B)^T = A^T \pm B^T$ (iii) $(AB)^T = B^T A^T$ (iv) $(kA)^T = k(A)^T$ (v) $I^T = I$ (vi) tr (A) = tr $(A)^T$ (vii) $(A_1A_2A_3...,A_{n-1}A_n)^T = A_n^T A_{n-1}^T...,A_3^T A_2^T A_1^T$ Symmetric Matrix : A square matrix $A = [a_{ij}]$ is called symmetric matrix if $a_{ij} = a_{ji}$ for all i, j or $A^T = A$ Skew-Symmetric Matrix : A square matrix $A = [a_{ij}]$ is called skew-symmetric matrix if $a_{ij} = -a_{ij}$ for all i, j or $A^T = -A$

Also every square matrix A can be uniquely expressed as a sum of a symmetric and skew-symmetric matrix.

DETERMINANTS

Differentiation of a determinants : If $A = \begin{vmatrix} f(x) & g(x) \\ h(x) & \ell(x) \end{vmatrix}$ then $\frac{dA}{dx} = \begin{vmatrix} f'(x) & g'(x) \\ h(x) & \ell(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) \\ h'(x) & \ell'(x) \end{vmatrix}$ is a differentiation of Matrix A

Properties of adjoint matrix : If A, B are square matrices of order n and I_n is corresponding unit matrix, then

- (i) A (adj. A) = |A| I_n = (adj A) A
 (ii) |adj A| = |A|ⁿ⁻¹ (Thus A (adj A) is always a scalar matrix)
- (iii) $adj(adjA) = |A|^{n-2}A$
- (iv) $|adj(adjA)| = |A|^{(n-1)^2}$
- (v) $adj(A^T) = (adjA)^T$
- (vi) adj(AB) = (adj B)(adj A)
- (vii) $adj (A^m) = (adj A)^m, m \in N$
- (viii) adj (kA) = k^{n-1} (adj. A), $k \in \mathbb{R}$

(ix)
$$\operatorname{adj}(I_n) = I_n$$

- Properties of Inverse Matrix : Let A and B are two invertible matrices of the same order, then
 - (i) $(A^T)^{-1} = (A^{-1})^T$
 - (ii) $(AB)^{-1} = B^{-1}A^{-1}$
 - (iii) $(A^k)^{-1} = (A^{-1})^k, k \in N$
 - (iv) $adj (A^{-1}) = (adj A)^{-1}$
 - (v) $(A^{-1})^{-1} = A$

(vi)
$$|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|} = |\mathbf{A}|^{-1}$$

(vii) If A = diag $(a_1, a_2, ..., a_n)$, then $A^{-1} = diag (a_1^{-1}, a_2^{-1}, ..., a_n^{-1})$ (viii) A is symmetric matrix $\Rightarrow A^{-1}$ is symmetric matrix.

VECTOR ALGEBRA

Vector perpendicular to both \vec{a} and \vec{b} is equal to $\vec{a} \times \vec{b}$.

DIFFERENTIAL EQUATIONS

Methods of solving a first order first degree differential equation :

(a) Differential equation of the form $\frac{dy}{dx} = f(x)$

$$\frac{dy}{dx} = f(x) \implies dy = f(x) dx$$

Integrating both sides we obtain

$$\int dy = \int f(x) dx + c \text{ or } y = \int f(x) dx + c$$

(b) Differential equation of the form $\frac{dy}{dx} = f(x) g(y)$

$$\frac{dy}{dx} = f(x) g(y) \Rightarrow \int \frac{dy}{g(y)} = \int f(x) dx + c$$

(c) Differential equation of the form of

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(ax+by+c):$$

To solve this type of differential equations, we put

$$ax + by + c = v$$
 and $\frac{dy}{dx} = \frac{1}{b} \left(\frac{dv}{dx} - a \right)$

$$\therefore \frac{dv}{a+bf(v)} = dx$$

So solution is by integrating $\int \frac{dv}{a+bf(v)} = \int dx$

(d) Differential Equation of homogeneous type : An equation in x and y is said to be homogeneous if it

can be put in the form
$$\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}$$
 where $f(x, y)$ and

g (x ,y) are both homogeneous functions of the same degree in each term.

So to solve the homogeneous differential equation

$$\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}$$
, substitute $y = vx$ and so $\frac{dy}{dx} = v + x \frac{dV}{dx}$

Thus
$$v + x \frac{dv}{dx} = f(v) \Rightarrow \frac{dx}{x} = \frac{dv}{f(v) - v}$$

Therefore solution is $\int \frac{dx}{x} = \int \frac{dv}{f(v) - v} + c$

Linear differential equations :

$$\frac{dy}{dx} + Py = Q \qquad \dots \dots (1)$$

Where P and Q are either constants or functions of x. Multiplying both sides of (1) by $e^{\int P dx}$, we get

$$e^{\int P dx} \left(\frac{dy}{dx} + Py \right) = Q e^{\int P dx}$$

On integrating both sides with respect to x we get

$$y e^{\int P dx} = \int Q e^{\int P dx} + c$$

which is the required solution, where c is the constant and $e^{\int P dx}$ is called the integration factor.

MATHEMATICS