RMO (2024-2025)

(Non-KV & Non-JNV)

Time: 3 hours

INSTRUCTIONS

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.
- 1. Let n > 1 be a positive integer. Call a rearrangement $a_1, a_2, ..., a_n$ of 1, 2..., *n* nice if for every k = 2, 3, ..., n we have that $a_1 + a_2 + ... + a_k$ is **not** divisible by *k*.
 - (a) If n > 1 is odd, prove that there is no nice rearrangement of 1, 2, ..., *n*.
 - (b) If *n* is even, find a nice rearrangement of 1, 2, ..., *n*.
- 2. For a positive integer n. Let R (n) be the sum of the remainders when n is divided by 1, 2, ..., n.

For example, R(4) = 0 + 0 + 1 + 0 = 1,

R(7) = 0 + 1 + 1 + 3 + 2 + 1 + 0 = 8.

Find all positive integers *n* such that R(n) = n - 1.

- 3. Let ABC be an acute triangle with AB = AC. Let D be the point on BC such that AD is perpendicular to BC. Let O, H, G be the circumcentre, orthocentre and centroid of triangle ABC respectively. Suppose that 2.OD = 23. H.D. Prove that G lies on the incircle of triangle ABC.
- 4. Let a_1, a_2, a_3, a_4 be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$. Show that there exist i, j with $1 \le i < j \le 4$, such that

 $(a_i - a_j)^2 \le \frac{1}{5}.$

- 5. Let ABCD be a cyclic quadrilateral such that AB is parallel to CD. Let O be the circumcentre of ABCD, and L be the point on AD such that OL is perpendicular to AD. Prove that OB (AB + CD) = OL (AC + BD).
- 6. Let $n \ge 2$ be a positive integer. Call a sequence a_1, a_2, \dots, a_k of integers an *n*-chain if $1 = a_1 < a_2 < \dots < a_k = n$, and a_i divides a_{i+1} for all $i, 1 \le i \le k-1$. Let f(n) be the number of *n*-chains where $n \ge 2$. For example, f(4) = 2 corresponding to the 4-chains $\{1, 4\}$ and $\{1, 2, 4\}$. Prove that $f(2^m, 3) = 2^{m-1}(m+2)$ for every positive integer *m*.

2024/25-2

Hints & Solutions

1. For the first part, note that the given condition for k = nimplies that the sum $a_1 + a_2 + \dots + a_n$ is not divisible by n. However, a_1, a_2, \dots, a_n is a rearrangement of 1, 2, ..., n so their sum is equal to $1 + 2 + \dots + n = \frac{n(n+1)}{2}$ which is divisible by *n* for odd *n*. Thus, there cannot be any nice rearrangement of 1, 2, ..., *n* for odd *n*. For the second part. let n = 2m. We show that the sequence $2, 1, 4, 3, 6, 5, 8, 7, \dots, 2m, 2m - 1$ is a nice rearrangement of 1, 2, ..., 2*m*. For *k* even, we have $a_1 + a_2 + \dots + a_k = \frac{k(k+1)}{2}$ which is not divisible by *k* since $\frac{(k+1)}{2}$ is not an integer. For *k* odd, we have

 $a_1 + a_2 + \dots + a_k = \frac{k(k+1)}{2} + 1$ which is 1 more than a

- multiple of k, so it is again not divisible by k for k > 1.
- 2. Let n > 8. The remainder when *n* is divided by some i satisfying $\frac{n}{2} < i \le n$ is (n i). Adding. we get that

$$n-1 = \mathbf{R}(n) \ge \sum_{i=\left[\frac{n}{2}\right]+1}^{n} (n-i) = \sum_{k=1}^{\left[\frac{n}{2}\right]-1} k$$
$$= \frac{1}{2} \left[\frac{n}{2}\right] \left(\left[\frac{n}{2}\right]-1\right) \ge \frac{1}{2} \left[\frac{n}{2}\right] \cdot 4 \ge n$$

This is contradiction. So we get that $n \le 8$. Now we can compute that R(1) = R(2) = 0, R(3) = R(4) = 1, R(5) = 4, R(6) = 3, R(7) = R(8) = 8. Therefore the only solutions are n = 1 and n = 5.

3. Let I be the incentre of $\triangle ABC$. First note that O, G, H, I all lie on AD since it is simultaneously the perpendicular bisector of BC, the A-altitude, the A-median and the angle bisector of $\angle BAC$.

Suppose the reflection of H across BC is M. Then M lies on the circumcircle of \triangle ABC as well as lies on the angle bisector of \angle BAC, so it is the midpoint of arc BC not containing A. Then, we note that \angle MBI = \angle MIB, so MB = MI. Combining with MB = MC, we have that M is the circumcenter of \triangle BIC.

Now, let the circumradius of $\triangle ABC$ be R, let OD = x,

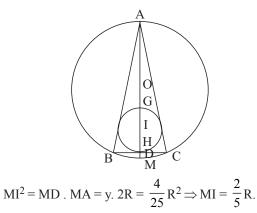
HD = y, Then we have
$$x = \frac{23}{2}y$$

Also R = OM = OD + DM = OD + HD = x + y. Thus, $y = \frac{2}{25}$ R. This implies that AD = $2R - y = \frac{48}{25}$ R.

Now, recall that G divides AD in the ratio 2 : 1,

So,
$$GD = \frac{16}{25}$$
 R.

Also we have $\triangle MDB \sim \triangle MBA$ since the angle at M is common and $\angle MBD = \angle MAB$, both, equalling $\frac{\angle BAC}{2}$. Therefore, $MB^2 = MD.MA$. and hence



Thus,
$$ID = \frac{8}{25}$$
 R, which combined with $GD = \frac{16}{25}$ R

implies that GI = ID is equal to the inradius, proving that G lies on the incircle.

4. Let *m* be the minimum of $|a_i - a_j|$ over all $1 \le i < j \le 4$. Without loss of generality, we may assume that $a_1 \le a_2 \le a_3 \le a_4$. Then $a_i - a_i \ge (j - i)$ m for all $1 \le i \le j \le 4$. Thus,

$$\sum_{\leq i < j \leq 4} (a_i - a_j)^2 \geq \sum_{1 \leq i < j \leq 4} (j - i)^2 m^2 = 20m^2.$$

On the other hand,

1

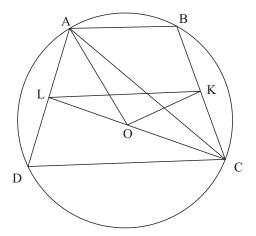
$$\sum_{1 \le i < j \le 4} (a_i - a_j)^2 = 4(a_1^2 + a_2^2 + a_3^2 + a_4^2) - (a_1 + a_2 + a_3 + a_4)^2 \le 4.$$

Thus, $20m^2 \le 4 \implies m^2 \le \frac{1}{5}$.

Let K be the foot of perpendicular from O onto BC. Note that ABCD is a isosceles trapezium, therefore AC + BD = 2AC. We have that L and K are the midpoints of AD

and BC respectively, therefore $LK = \frac{(AB + CD)}{2}$. Also OB

= OA. Thus it suffices to prove that $\frac{OA}{AC} = \frac{OL}{LK}$.



Now $\angle AOL = \angle ACD = \angle BDC = \angle COK$. Thus $\angle AOC = \angle LOK$. Also note that OL = OK since distance from center to two equal chords is the same. Thus, $\triangle AOC$ and $\triangle LOK$ are isosceles triangles with $\angle AOC = \angle LOK$, hence they are similar, which immediately implies the desired.

6. We will prove for any two distinct primes p, q, that $f(p^m.p) = 2^{m-1} (m+2)$ for all integers $m \ge 1$. Suppose $n = p^m. q$, and let $\{a_1, a_2, ..., a_k\}$ be a *n*-chain. Then a_i divides a_{i+1} implies that $\frac{a_{i+1}}{a_i} = p^{b_i}.q^{c_i}$, where b_i, c_i are non-negative integers for i = 1, ..., k - 1. Note that $a_{i+1} > a_i$ implies that b_i and c_i cannot be simultaneously 0.

Now, we have $b_1 + \dots + b_{k-1} = m$ and $c_1 + \dots + c_{k-1} = 1$. Thus, exactly one of the c_i will be equal to 1, and that implies that at most one of the b_i can be 0.

Recall that a composition of *m* is a sequence of positive integers adding to *m*. Corresponding to any *l*-length composition x_1, \ldots, x_1 of *m*, we will get exactly 2l + 1 many

n-chains. *l* of them are obtained by setting $b_i = x_i$ for all *i* and choosing one of $c_1 \dots c_l$ to be 1, and rest to be 0. The other l + 1 chains of length l + 1 are obtained by choosing some $1 \le j \le l + 1$, then setting $c_j = 1$, $b_j = 0$, $b_i = x_i$ for all i < j, and $b_i = x_{i-1}$ for all i > j.

This can be done in various ways as follows:

First way: it is well known that there are $\binom{m-1}{l-1}$

compositions of m with l parts. Therefore, we need

$$\sum_{l=1}^{m} \binom{m-1}{l-1} (2l+1) = \sum_{l=0}^{m} \binom{m-1}{l} (2l+3)$$
$$= 2\sum_{l=0}^{m-1} l \cdot \binom{m-1}{l} + 3\sum_{l=0}^{m-1} \binom{m-1}{l}$$
$$= 2\left(\sum_{l=1}^{m-1} (m-1) \cdot \binom{m-2}{l-1}\right) + 3 \cdot 2^{m-1}$$
$$= 2(m-1)2^{m-2} + 3 \cdot 2^{m-1} = 2^{m-1} (m+2).$$

Second way: We will show that the total number of compositions of m, is 2^{m-1} and the sum of the number of parts over all compositions of *m* is $2^{m-2}(m + 1)$ via direct bijections. This finishes the problem since we get the sum of (2l + 1) over all compositions to be 2.

 $2^{m-2}(m+1) + 2^{m-1} = 2^{m-1}(m+2).$

For the first one, consider sequences of 0's and 1's such that there are exactly m 1's, no two 0's are adjacent and the sequence begins and ends with a 1. Then we can choose whether or not to insert a 0 in the m – 1 spaces between the 1's, hence there are 2^{m-1} possible ways to do it.

For the second one, we consider the above sequences but we put a single 0 at the end, and we also select a special 0. Then we can choose the special 0 first. If this is the last 0 then we get 2^{m-1} choices for the other zeroes, and if not then we have m - 1 choices for the special 0, and then 2^{m-2} choices for the other spaces. This totals to $2^{m-2}(m+1)$ ways.