

CBSE Class 12 CHEMISTRY 2021-22 Term I Sample Papers

with OMR Sheets

Highlights

- 10 Fully Solved Sample tapers with Ma Scheme
- CBSE Sample Paper 2021
- Objective Qns. & Solns. CB
 m = 2020
- Objective Qns. & Some 2021 Sol d Paper
- Objective Qns. & Sole BSE Question unk
- Latest Revised CBSE Symposis for 2021-22 (issued on 28-07-202)
- Covers all new variety Qns A/R, Case base & MCQs etc.
- Separate OMR Answer Sheet for each Sample Paper

Based on the Pattern of Sample Paper Issued by CBSE on 2nd Sep, 2021 Corporate Office

DISHA PUBLICATION

45, 2nd Floor, Maharishi Dayanand Marg, Corner Market, Malviya Nagar, New Delhi - 110017 Tel : 49842349 / 49842350

No part of this publication may be reproduced in any form without prior permission of the publisher. The author and the publisher do not take any legal responsibility for any errors or misrepresentations that might have crept in. We have tried and made our best efforts to provide accurate up-to-date information in this book.

All Right Reserved

——— By ——— Kalpana Bhargav Rajni Sharma

Typeset by Disha DTP Team

www.dishapublication.com

Books & ebooks for School & Competitive Exams

www.mylearninggraph.com

Etests for Competitive Exams

Jopyright

 \bigcirc

isha

Write to us at **feedback_disha@aiets.co.in**

CONTENTS OF FREE SAMPLE BOOK

• Sample Paper-4

SP-23-SP-30

This sample book is prepared from the book "Super 10 CBSE Class 12 Chemistry 2021-22 Term I Sample Papers with OMR Sheets".

MRP- 170/-

In case you like this content, you can buy the **Physical Book** or **E-book** using the ISBN provided above.

The book & e-book are available on all leading online stores.

CONTENTS OF COMPLETE BOOK

• L (atest Revised Syllabus for Academic Year (2021-2022) Issued by CBSE on 28-07-2021)	i—iii
• (CBSE Sample Paper 2021-22 with solutions Issued by CBSE on 02-09-2021)	SQP 2021-2022 – 1-10
• 0	Objective Questions and Solutions CBSE Sample Paper 2020-21	SQP 2020-2021 – 1-4
• •	Objective Questions and Solutions All India CBSE Board 2020 Solved Paper	SP 2020 - 1-2
• •	Objective Questions and Solutions CBSE Questions Bank	QB 2021 – 1-10
10 S	ample Papers with OMR Answer Sheets	
• \$	ample Paper-1	SP-1-SP-6
• \$	ample Paper-2	SP-7-SP-14
• \$	ample Paper-3	SP-15-SP-22
• \$	ample Paper-4	SP-23-SP-30

Sample Paper-5	SP-31-SP-38
Sample Paper-6	SP-39-SP-46
Sample Paper-7	SP-47-SP-54
Sample Paper-8	SP-55-SP-62
Sample Paper-9	SP-63-SP-70
Sample Paper-10	SP-71-SP-78
SOLUTIONS TO SAMPLE PAPERS 1-10	S-1-S-32

Sample Paper

Time: 90 Minutes

General Instructions

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SEC TIO N-A

This section consists of 25 multiple choice questions with overall choice to attempt **any 20** questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

I.A D-carbohydrate is:
(a) Always dextrorotatory
(b) Always laevorotatory
(c) Always the mirror of the corresponding L-carbohydrate
(d) None of these.2.Concentrated nitric acid, upon long standing, turns yellow brown due to the formation of
(a) NO(b) NO2(c) N20(d) N2043.Ammonia on catalytic oxidation gives an oxide from which nitric acid is obtained. The oxide is :
(a) N2O3(b) NO(c) NO2(d) N2O44.Which is the least stable form of glucose ?
(a)
$$\alpha$$
-D-Glucose(b) β -D-Glucose(c) Open chain structure
(d) All are equally stable5.The best method for the conversion of an alcohol into an alkyl chloride is by treating the alcohol with
(a) PCl5(b) dry HCl in the presence of anhydrous ZnCl2
(c) SOCl2 in presence of pyridine(d) none of these6.Nitrogen forms N2, but phosphorus is converted into P4 from P, the reason is
(a) Triple bond is present between phosphorus atom
(b) $p_{\pi} - p_{\pi}$ bonding is strong
(c) $p_{\pi} - p_{\pi}$ bonding is weak(d) Multiple bond is formed easily7.Example of molecular solid is :
(a) SO2(s)
(b) SiC
(c) C (c) C (graphite)(d) NaCl8.Colligative properties of the solution depend on
(a) Nature of solute
(c) Number of particles present in the solution
(d) Number of moles of solvent only9.9.CsCl crystallises in body centred cubic lattice. If 'a' is its edge length then which of the following expressions is correct?(a) $\Gamma_{Cs^+} + \Gamma_{CT} = 3a$
(b) $\Gamma_{Cs^+} + \Gamma_{CT} = \frac{3a}{2}$
(c) $\Gamma_{Cs^+} + \Gamma_{CT} = \frac{\sqrt{3}a}{2}$ (d) $\Gamma_{Cs^+} + \Gamma_{CT} = \sqrt{3}a$

.

Max. Marks: 35

23

10.	Benzene hexachloride is	
	(a) $1, 2, 3, 4, 5, 6$ -hexachlorocyclohexane (b)	(b) $1, 1, 1, 6, 6, 6$ -hexachlorocyclohexane
	(c) 1, 6-phenyl-1, 6-chlorohexane (d	(d) 1, 1-phenyl-6, 6-chlorohexane
11.	. The two forms of D–glucopyranose obtained from the solu	olution of D-glucose are better called
	(a) isomers (b) anomers (c	(c) epimers (d) enantiomers
12.	. Which of the following reactions is an example of nucleop	ophilic substitution reaction?
	(a) $2 RX + 2 Na \rightarrow R - R + 2 NaX$ (b)	(b) $RX + H_2 \rightarrow RH + HX$
	(c) $RX + Mg \rightarrow RMgX$ (c)	(d) $RX + KOH \rightarrow ROH + KX$
13.	Fluorine exhibits an oxidation state of only –1 because	
	(a) it can readily accept an electron (b)	(b) it is very strongly electronegative
	(c) it is a non-metal (d	(d) it belongs to halogen family
14.	. When phenol is treated with excess bromine water, it gives	/es:
	(a) <i>m</i> -bromophenol (l	(b) <i>o</i> - and <i>p</i> -bromophenol
	(c) 2, 4-dibromophenol (d	(d) 2, 4, 6-tribromophenol
15.	Which of the following conditions favours the existence of	e of a substance in the solid state?
	(a) High temperature (I	(b) Low temperature
	(c) High thermal energy (d	(d) Weak cohensive forces
16.	• How many alcohols with molecular formula $C_4 H_{10} O$ are ch	chiral in nature?
	(a) 1 (b) 2 (d	(c) 3 (d) 4
17.	Pressure cooker reduces cooking time because	
	(a) the heat is more easily distributed	
	(b) the higher pressure tenderizes the food	
	(c) the boiling point of the water inside is elevated	
	(d) a larger flame is used	
18.	IUPAC name of the compound $CH_2 - CH - OCH_2$ is.	s
	(a) 1-methoxy-1methylethane	(b) 2-methoxy-2-methylethane
	(a) 2 -methoxypropane (f)	(d) isopropylmethyl ether
19.	In case of hydride of oxygen family which of the following	ing physical property change regularly on moving down the group
17.	(a) Melting point	(b) Thermal stability
	(a) Reiling point (i)	(d) Critical temperature
20	(c) Boining point (c)	(u) Critical temperature
20.	() A distance was a solutely specific term?	
	(a) A diastereomer (i	(b) An epimer
21	(c) An anomer (i) The compound which contains all the four 1° 2° 2° and 4°	(d) None of the three.
41.	(a) 2.3 dimethylpentene	(b) $2 \text{ chlore } 2.3 \text{ dimethylpentone}$
	(a) $2, 3$ d trimethylpentane (f	(d) 2.2 dimethylpentane
22	(c) 2, 5, 4-unneurypentale (c)	(u) 5,5-unneurypentane
<i>LL</i> .	\mathbf{x}_{111}	
	(b) It is less electronegative	
	 (b) It is less electronegative (b) It has ability to exhibit catenation 	
	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ pπ bond 	
	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable ovidation states 	tas
23	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable oxidation states 	tes
23.	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable oxidation states The total number of acyclic isomers including the stereoiso (a) 11 (b) 12 	tes somers with the molecular formula C_4H_7Cl
23. 24	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable oxidation states The total number of acyclic isomers including the stereoiso (a) 11 (b) 12 (c) Which of the following units is useful in relating concent 	tes somers with the molecular formula C_4H_7Cl (c) 9 (d) 10 entration of solution with its vapour pressure?
23. 24.	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable oxidation states The total number of acyclic isomers including the stereoiso (a) 11 (b) 12 (c) Which of the following units is useful in relating concent (a) Mole fraction (b) Parts per milion 	tes somers with the molecular formula C_4H_7Cl (c) 9 (d) 10 entration of solution with its vapour pressure? (c) Mass percentage (d) Molality
23. 24. 25.	 (b) It is less electronegative (b) It is less electronegative (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable oxidation states The total number of acyclic isomers including the stereoiso (a) 11 (b) 12 (c) Which of the following units is useful in relating concent (a) Mole fraction (b) Parts per milion (c) Which of the following solutions does not change its column 	tes somers with the molecular formula C_4H_7Cl (c) 9 (d) 10 entration of solution with its vapour pressure? (c) Mass percentage (d) Molality olour on passing ozone through it?
23.24.25.	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable oxidation states The total number of acyclic isomers including the stereoiso (a) 11 (b) 12 (c) Which of the following units is useful in relating concent (a) Mole fraction (b) Parts per milion (c) Which of the following solutions does not change its color 	tes somers with the molecular formula C_4H_7Cl (c) 9 (d) 10 entration of solution with its vapour pressure? (c) Mass percentage (d) Molality olour on passing ozone through it? (b) Alcoholic solution of benzidine
23. 24. 25.	 (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute pπ-pπ bond (d) It has the tendency to show variable oxidation states The total number of acyclic isomers including the stereoiso (a) 11 (b) 12 (c) Which of the following units is useful in relating concent (a) Mole fraction (b) Parts per milion (c) Which of the following solutions does not change its colo (a) Starch iodide solution (I) (b) Acidic solution of K₂Cr₂O₂ (c) 	tes somers with the molecular formula C_4H_7Cl (c) 9 (d) 10 entration of solution with its vapour pressure? (c) Mass percentage (d) Molality olour on passing ozone through it? (b) Alcoholic solution of benzidine (d) Acidified solution of FeSO.

SEC TIO N-B

This section consists of 24 multiple choice questions with overall choice to attempt **any 20** questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

In both DNA and RNA, heterocylic base and phosphate ester linkages are at -26. (b) C'_1 and C'_5 respectively of the sugar molecule (a) C'_5 and C'_1 respectively of the sugar molecule (c) C'_2 and C'_5 respectively of the sugar molecule (d) C'_5 and C'_2 respectively of the sugar molecule 27. In the case of alkali metals, the covalent character decreases in the order: (a) MF > MCl > MBr > MI(b) MF > MCl > MI > MBrMCl > MI > MBr > MF (c) MI > MBr > MCl > MF(d) 28. Of the interhalogen AX_3 compounds, ClF_3 is most reactive but BrF_3 has higher conductance in liquid state. This is because (a) BrF_3 has higher molecular mass (b) ClF_3 is more volatile (c) BrF_3 dissociates into BrF_2^+ and BrF_4^- most easily (d) Electrical conductance does not depend on concentration **29.** Molarity of H_2SO_4 is 18 M. Its density is 1.8 g/mL. Hence molality is 500 (d) 18 (a) 36 (b) 200 (c) 30. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of 2.0 M HNO₃? The concentrated acid is 70% HNO₂ (a) $90.0 \text{ g conc. HNO}_3$ (b) $70.0 \,\mathrm{g}\,\mathrm{conc.}\,\mathrm{HNO}_3$ (c) $54.0 \text{ g conc. HNO}_3$ $45.0 \,\mathrm{g}\,\mathrm{conc.}\,\mathrm{HNO}_3$ (d) **31.** In the following groups : (I) –OAc (II) –OMe (III) $-OSO_2 Me$ $(IV) -OSO_2CF_2$ the order of leaving group ability is (a) I > II > III > IV(b) III > II > I > IV (d) II > III > IV > IIV>III>I>II (c) 32. Which one of the following reactions of xenon compounds is not feasible? (a) $3XeF_4 + 6H_2O \longrightarrow 2Xe + XeO_3 + 12HF + 1.5O_2$ (b) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$ (c) $XeF_6 + RbF \longrightarrow Rb[XeF_7]$ (d) $XeO_3 + 6HF \longrightarrow XeF_6 + 3H_2O$ **33.** The **incorrect** statement among the following is: (a) α -D-glucose and β -D-glucose are anomers. (b) α -D-glucose and β -D-glucose are enantiomers. (c) Cellulose is a straight chain polysaccharide made up of only β -D-glucose units. (d) The penta acetate of glucose does not react with hydroxyl amine. 34. Identify the compound Y in the following reaction. Na NO₂+HCl 273–278 K $Cu_2Cl_2 \rightarrow Y + N_2$ (d)(a)

35. Elements of group- 15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is

25

Pub	lication Inc. 26
36.	The number of atoms in 100 g of an <i>fcc</i> crystal with density, $d = 10 g/cm^3$ and cell edge equal to 100 pm, is equal to
	(a) 1×10^{25} (b) 2×10^{25} (c) 3×10^{25} (d) 4×10^{25}
37.	A set of compounds in which the reactivity of halogen atom in the ascending order is
	(a) chlorobenzene, vinyl chlorobenzene, chloroethane (b) chloroethane, chloroethane, chlorobenzene
38.	At room temperature. HCl is a gas while HF is a low boiling liquid. This is because
	(a) H-F bond is covalent (b) H-F bond is ionic
	(c) HF has metallic bond (d) HF has hydrogen bond
39.	The normal boiling point of water is 373 K. Vapour pressure of water at temperature T is 19 mm Hg. If enthalpy of vaporisation is 40.67 kJ/mol, then temperature T would be (Use : $\log 2 = 0.3$, R : 8.3 JK ⁻¹ mol ⁻¹):
	(a) 250 K (b) 291.4 K (c) 230 K (d) 290 K
40.	Mark the correct increasing order of reactivity of the following compounds with HBr/HCl.
	CH_2OH CH_2OH CH_2OH
	\sim γ γ
	\dot{NO}_2 Cl
	$(1) \qquad (11) \qquad (111)$
	(a) $I \le II \le III$ (b) $II \le I \le III$ (c) $II \le III \le I$ (d) $III \le II \le I$
41.	$NH_4ClO_4 + HNO_3(dil.) \longrightarrow HClO_4 + [X]$
	$[X] \xrightarrow{\Delta} Y(g)$
	[X] and [Y] are respectively –
	(a) $NH_4NO_2 \& N_2O$ (b) $NH_4NO_2 \& N_2$ (c) $HNO_4 \& O_2$ (d) None of these
42.	The edge length of a face centered cubic cell of an ionic substance is 508 pm. If the radius of the cation is 110 pm, the radius
	of the anion is
	(a) 288 pm (b) 398 pm (c) 618 pm (d) 144 pm
43.	A metal 'M' reacts with nitrogen gas to give ' M_3N' . ' M_3N' on heating at high temperature gives back 'M' and on reaction with water produces a gas 'B' Gas 'B' reacts with aqueous solution of CuSO, to form a deep blue compound, 'M' and 'B'
	respectively are :
	(a) Li and NH_3 (b) Ba and N_2 (c) Na and NH_3 (d) Al and N_2
44.	$\xrightarrow{\text{H} \text{ CrO}_3\text{Cl}, (\text{PCC}), \text{ CH}_2\text{Cl}_2}$
	$CH_3 = C = OH$
	$\dot{C}H_3$
	Draduat of the reaction is
	OH CHO CO ₂ H O
	$\int \int $
	$(a) \qquad (b) \qquad (c) \qquad (d) $
	L Кон Гон

Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options given below:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- **45.** Assertion : The bond angle in alcohols is slightly less than the tetrahedral angle. **Reason :** In alcohols, the oxygen of -OH group is attached to sp^3 hybridized carbon atom.
- 46. Assertion : Atoms in S_8 molecule undergo sp^3 hybridization and contain two lone pair on each atom. Reason : S_8 has a V-shape.
- 47. Assertion : Ethers behave as bases in the presence of mineral acids.Reason : Due to the presence of lone pairs of electrons on oxygen.
- 48. Assertion : High concentration of nucleophile favour S_NI mechanism.
 Reason : 2° alkyl halides are more reactive than 1° alkyl halides towards S_NI reactions.
- **49.** Assertion : When a metal is treated with conc. HNO_3 it generally yields a nitrate, NO_2 and H_2O . **Reason :** Conc. HNO_3 reacts with metal and first produces a metal nitrate and nascent hydrogen. The nascent hydrogen then further reduces HNO_3 to NO_2 .

SECTIO N-C

This section consists of 6 multiple choice questions with an overall choice to attempt **any 5**. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.

Case Study: Read the following paragraph and answers the questions.

The word "colligative" has been adapted or taken from the Latin word "colligatus" which translates to "bound together". A colligative property is a property of a solution that is dependent on the ratio between the total number of solute particles (in the solution) to the total number of solvent particles. Colligative properties are not dependent on the chemical nature of the solution's components. Dilute solution containing non-volatile solute exhibit some properties which depend only on the number of solute particles present and not on the type of solute present. These properties are called colligative properties. These properties are mostly seen in dilute solutions. There are different types of colligative properties of a solution. These include, vapour pressure lowering, boiling point elevation, freezing point depression and osmotic pressure.

(c)

- **53.** Which one of the following is a colligative property ?
 - (a) Boiling point

Osmotic pressure

- (b) Vapour pressure
- (d) Freezing point
- 54. The relative lowering of the vapour pressure is equal to the ratio between the number of
 - (a) solute molecules to the solvent molecules
 - (b) solute molecules to the total molecules in the solution
 - (c) solvent molecules to the total molecules in the solution
 - $(d) \quad solvent \ molecules \ to \ the \ total \ number \ of \ ions \ of \ the \ solute.$
- **55.** Someone has added a non electrolyte solid to the pure liquid but forgot that among which of the two beakers he has added that solid. This problem can be solved by checking
 - (a) relative lower in vapour pressure
- (b) elevation in boiling point
- (c) depression in Freezing point
- (d) all above

OMR ANSWER SHEET

Sample Paper No –

- ★ Use Blue / Black Ball pen only.
- * Please do not make any atray marks on the answer sheet.
- ★ Rough work must not be done on the answer sheet.
- * Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

Start time : E	id time Time taken											
1. Name (in Block Letters)	. Name (in Block Letters)											
2. Date of Exam												
. Candidate's Signature												
SECTION-A												
1. a b C d 9. a b C d 18. a b C 2. a b C d 10. a b C d 19. a b C 3. a b C d 11. a b C d 19. a b C 4. a b C d 11. a b C d 20. a b C 4. a b C d 12. a b C d 21. a b C 5. a b C d 13. a b C d 22. a b C 6. a b C d 14. a b C d 23. a b C 7. a b C d 15. a b C d b												
	SI	ECTION-B										
26. (a) (b) (c) (d) $27.$ (a) (b) (c) (d) $28.$ (a) (b) (c) (d) $29.$ (a) (b) (c) (d) $30.$ (a) (b) (c) (d) $31.$ (a) (b) (c) (d) $32.$ (a) (b) (c) (d) $33.$ (a) (b) (c) (d)	34. a 35. a 36. a 37. a 38. a 39. a 40. a 41. a			42. a 43. a 44. a 45. a 46. a 47. a 48. a 49. a								
SECTION-C												
50. (a) (b) (C) (d) 511: (a) (b) (C) (d)	52. (a) 548. (a)	(b) (C) (b) (C)	(d)	54. a 55. a	(b) (b)		d) D					
No. of Qns. Attempted	Correct	In	correct		Marks							

Page for Rough Work

Sample Paper

ANS WER KEYS																			
1	(d)	7	(a)	13	(b)	19	(b)	25	(c)	31	(b)	37	(a)	43	(a)	49	(a)	55	(d)
2	(b)	8	(c)	14	(d)	20	(d)	26	(b)	32	(d)	38	(d)	44	(b)	50	(c)		
3	(b)	9	(d)	15	(b)	21	(b)	27	(c)	33	(b)	39	(b)	45	(b)	51	(b)		
4	(c)	10	(a)	16	(a)	22	(c)	28	(c)	34	(a)	40	(c)	46	(c)	52	(c)		
5	(c)	11	(b)	17	(c)	23	(b)	29	(c)	35	(b)	41	(a)	47	(a)	53	(c)		
6	(c)	12	(d)	18	(c)	24	(a)	30	(d)	36	(d)	42	(d)	48	(d)	54	(b)		

(d)

15.

- 1. (d)
- 2. (b) The slow decomposition of HNO_3 is represented by 14. the equation

 $\begin{array}{rrr} 4\mathrm{HNO}_3 \ \rightarrow \ 4\mathrm{NO}_2 \ + \ 2\mathrm{H}_2\mathrm{O} \ + \ \mathrm{O}_2 \\ & (\mathrm{yellow-brown}) \end{array}$

- 3. (b) $4NH_3(g) + 5O_2(g) \xrightarrow{Catalyst} 4NO(g) + 6H_2O(g)$ $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ $3NO_2(g) + H_2O(l) \longrightarrow 2HNO_3(aq) + NO(g)$
- **4.** (c) Open chain structure is unstable and converted to cyclic.
- 5. (c) $R-OH+SOCl_2 \xrightarrow{Pyridine} RCl+SO_2^{\uparrow}+HCl^{\uparrow}$ SO₂ and HCl being gases escape leaving behind pure alkyl halide.

Direct fluorination of alkane is highly exothermic process.

- 6. (c) Nitrogen form N₂ (*i.e.* N=N) but phosphorus form P₄, because in P₂, $p_{\pi} p_{\pi}$ bonding is present which is a weaker bonding.
- 7. (a)
- **8.** (c) Colligative properties of dilute solution containing non volatile solute depends upon the number of particles of the solute present in the solution.
- 9. (d) For *bcc* lattice, body diagonal = $a\sqrt{3}$ The distance between the body centered atom and one corner atom in cube will be = $\frac{\sqrt{3}a}{2}$
- 10. (a)
- 11. (b) The two isomeric forms $(\alpha \text{and } \beta -)$ of D-glucopyranose differ in configuration only at C-1. Hence these are called anomers.

13. (b) It is the most electronegative element.

$$\xrightarrow{OH} \xrightarrow{3Br_2(aq.)} \xrightarrow{Br} \xrightarrow{OH} Br$$

2, 4,6-Tribromophenol

Note : The –OH group in phenol, being activating group, facilitates substitution in the *o*- and *p*-positions.

(b) At low temperature existence of a substance in solid state is due to slow molecular motion and strong cohesive forces.

These two forces hold the constituent particles together thus causes existence of substance in solid state.

16. (a) Following are the three possible isomers of butanol

(i)
$$CH_3CH_2 - CH_2 - CH_2OH$$

Butan-1-ol

(ii)
$$CH_3 \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3$$

 $| OH_3 \longrightarrow CH_2 \longrightarrow CH_3$

(iii)
$$CH_3$$

 $|$
 $H_3C - C - CH_3$
 $|$
 OH

2 – methylpropan – 2 – ol No Chiral Carbon

12. (d)

17. (c) The boiling point of water inside the cooker increases above 100°C due to accumulation of steam and increase in pressure. Thus making it possible to cook food faster.

18. (c)
$$H_3^3 C - CH_3 - OCH_3$$

IUPAC name of the above compund is 2-methoxypropane.

- **19.** (b) Order of M.P. of B.P. or critical temperature: $H_2O > H_2Te > H_2Se > H_2S$
- 20. (d) Since diastereomers are all those isomers which are not enantiomers, there may be more than one diastereomer of a compound. An epimer differs in the configuration of only one chiral carbon, so an epimer can be C-2, C-3, C-4, etc. An anomer may be α - or β - ; so no term is absolutely specific.

21. (b)
$$\overset{1^{\circ}CH_{3}}{CH_{3}-CH_{3}} - \overset{1^{\circ}CH_{3}}{CH_{3}-CH_{4^{\circ}|}} - \overset{2^{\circ}}{CH_{2}-CH_{3}} - \overset{1^{\circ}}{CH_{3^{\circ}}} - \overset{1^{\circ}}{CH_{3^{\circ}}-CH_{3^{\circ}}} - \overset{1^{\circ}}{C$$

- 22. (c)
- 23. (b) C_4H_7Cl is a monochloro derivative of C_4H_8 which itself exists in three acyclic isomeric forms.

Π

$$CH_{3}CH_{2}CH = CH_{2}$$
I
(Its four C's are different)
$$CH_{3}CH = CHCH_{3}$$
II
(It has 2 types of carbon)

$$CH_3 \\ | \\ CH_3 - C = CH_2$$

(It has 2 types of carbon)

Grand total of acyclic isomers = 6+4+2=12

(a) According to Henry's law partial pressure of a gas in 24. the solution is proportional to the mole fraction of gas in the solution.

 $p = K_H x$; $K_H = (Henry's constant)$

- 25. (c) Ozone does not react with acidified solution of $K_2Cr_2O_7$.
- 26. (b) In DNA and RNA heterocyclic base and phosphate ester are at C_1' and C_5' respectively of the sugar molecule.

- 27. (c) MI > MBr > MCl > MF. As the size of the anion decreases covalency decreases.
- 28. (c) In liquid state BrF_3 dissociates into BrF_2^+ and $BrF_4^$ ions most easily.
- (c) Molality (m) 29.

$$=\frac{\text{Molarity}}{\text{Density} - \frac{\text{Molarity} \times \text{Molecular mass}}{1000}}$$

$$=\frac{18}{1.8-\frac{18\times98}{1000}}=500 \text{ mol kg}^{-1}$$

30. (d) Molarity (M) =
$$\frac{\text{wt} \times 1000}{\text{mol. wt.} \times \text{vol} (\text{mL})}$$

$$2 = \frac{\text{wt.}}{63} \times \frac{1000}{250} \implies \text{wt.} = \frac{63}{2} \text{ g} = 31.5\text{g}$$

wt. of 70% acid = $\frac{100}{70} \times 31.5 = 45 \text{ g}$

(b) Weaker the base, better the leaving group. Hence 31.

> Decreasing order of basicity OMe OAc OSO2Me OSO2CF3 (I) (I) (III) (IV)

> Decreasing order of leaving group

(d) The products of the concerned reaction react each other forming back the reactants.

$$XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$$

34. (a) Sandmeyer's reaction

ĺ

32.

$$\underbrace{\overset{}{\underset{273-278 \text{ K}}{}}}_{NH_{2}} \underbrace{\overset{}{\underset{273-278 \text{ K}}{}}}_{273-278 \text{ K}} \underbrace{\overset{}{\underset{273-278 \text{ K}}{}}}_{N_{2}} \underbrace{\overset{}{\underset{273-278 \text{ K}}{}}}_{(Y)} \underbrace{\overset{}{\underset{273-278 \text{ K}}{}}$$

35. (b) The only well characterised compound having + 5oxidation state of Bi is BiF₅. It is due to smaller size and high electronegativity of fluorine.

36. (d)
$$M = \frac{\rho \times a^3 \times N_A \times 10^{-30}}{Z}$$

$$=\frac{10\times(100)^3\times6.02\times10^{23}\times10^{-30}}{4}=15.05$$

∴ Number of atoms in 100

$$g = \frac{6.02 \times 10^{23}}{15.05} \times 100 = 4 \times 10^{25}$$

- **37.** (a) $CH_3CH_2Cl > CH_2 = CHCl > C_6H_5Cl$
- **38.** (d) Due to hydrogen bonding, HF is a liquid.

39. (b) Given
$$P_1 = 19 \text{ mm Hg}$$
, $P_2 = 760 \text{ mm Hg}$;
 $\Delta H_{vap.} = 40670 \text{ J/mol}$

Applying Clausius-Clapeyron's equation

$$\log \frac{P_2}{P_1} = \frac{\Delta H_{vap}}{2.303 \times R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

or $\log \frac{760}{19} = \frac{40670}{2.303 \times 8.3} \left(\frac{373 - T_1}{T_1 \times 373} \right)$

on solving, we get $T_1 = 291.4 \text{ K}$

40. (c) Nucleophilic substitution reaction depend upon the stability of carbocation. As, presence of electron withdrawing group decreases the stability of carbocation in compounds (II) and (III), therefore, will give less stable carbocation than (I).

Further NO_2 group is a stronger EWG than — Cl.

Thus,
$$p$$
-NO₂—C₆H₄—CH₂ will be less stable than p Cl
—C₆H₄— $\overset{+}{C}$ H₂

Hence, the order of stability of carbocations, and thus reactivity of parent alcohol will be:

$$O_2N \longrightarrow CH_2 < CI \longrightarrow CH_2 < O \longrightarrow CH_2 < O \longrightarrow CH_2$$

41. (a)
$$\text{NH}_4\text{ClO}_4 + \text{HNO}_3 \rightarrow \text{HClO}_4 + \text{NH}_4\text{NO}_3$$

$$NH_4NO_3 \xrightarrow{\Lambda} N_2O + 2H_2O$$
(V)

42. (d) For an *fcc* crystal

$$r_{\text{cation}} + r_{\text{anion}} = \frac{\text{edge length}}{2}$$

$$110 + r_{anion} = \frac{508}{2}$$

 $r_{anion} = 254 - 110 = 144 \text{ pm}$

43. (a)
$$\underset{(M)}{\text{Li}(s)} + N_2(g) \xrightarrow{\text{high}} 2\text{Li}_3N(s)$$

$$Li_3N + 3H_2O \longrightarrow 3LiOH + NH_3$$
(B)

$$CuSO_4 + 4NH_3 \longrightarrow [Cu(NH_3)_4]SO_4$$

deep blue compound

 $(3^{\circ} alcohol cannot be oxidized)$

45. (b) The bond angle $\overset{:O:}{\underset{C}{\leftarrow}}$ in alcohols is slightly less

than the tetrahedral angle $(109^{\circ}-28')$. It is due to the repulsion between the unshared electron pairs of oxygen.

- **46.** (c) S_8 has puckered ring type structure.
- 47. (a) **R** is the correct explanation of **A**.
- **48.** (d) $S_N I$ mechanism does not depend on the concentration of nucleophile. 2° alkyl halides are more reactive than 1° alkyl halides towards $S_N I$ mechanism, because 2° carbocation is more stable than 1° carbocation.

49. (a)
$$\underset{(Metal)}{M} + \underset{(Conc.)}{HNO_3} \longrightarrow \underset{(Metal nitrate)}{MNO_3} + \underset{(Nascent hydrogen)}{H}$$

$$2\text{HNO}_3 + \underbrace{2\text{H}}_{(\text{Nascent hydrogen})} \longrightarrow 2\text{NO}_2 + 2\text{H}_2\text{O}$$

50. (c) In allylic halides hydrogen atom is bonded to sp^3 hybridised carbon atom. Whereas in vinylic halide, hydrogen atom is bonded to sp^2 hybridised carbon atom.

$$H_{3}CHCl_{2}$$

$$H_{3}CHCLL_{2}$$

(gem-dihalide) (vic-dihalide)

51. (b) 52. (c)

C

- **53.** (c) Osmotic pressure is a colligative property.
- **54.** (b) According to Raoult's law, the relative lowering in vapour pressure of a dilute solution is equal to the mole fraction of the solute present in the solution.

$$\frac{p^{\circ} - p}{p}$$
 = Mole fraction of solute = $\frac{n}{n+N}$

55. (d) All are colligative properties.