144 JEE Main Mathematics

Online (2023-2012) \& Offline (2018-2002)
Chapter-wîse Topic-wîse
Previous Year Solved Papers

7th Edition

Divided ir

- 126 Online Pape, 23 ¿012;
- 18 Offline Papers (2018-2002)
- 100\% Detailed Solutio-
- 3940+ MCQs \& Ju NVMs Question Bank

DISHA

- Includes 24 Sets held in 2023 Session I \& II

DISHA Publication Inc.

45, 2nd Floor, Maharishi Dayanand Marg, Corner Market, Malviya Nagar, new Delhi -110017
Tel: 49842349/ 49842350
© Copyright DISHA Publication Inc.

All Rights Reserved. No part of this publication may be reproduced in any form without prior permission of the publisher. The author and the publisher do not take any legal responsibility for any errors or misrepresentations that might have crept in.
We have tried and made our best efforts to provide accurate up-to-date information in this book.

Edited By

Raghvendra Kumar Sinha,
Dileep Singh

Jitesh Acharya

Typeset By

DISHA DTP Team

Buying books from DISHA

Just Got A Lot More Rewarding!!!

We at DISHA Publication, value your feedback immensely and to show our apperciation of our reviewers, we have launched a review contest.

To participate in this reward scheme, just follow these quick and simple steps:

- Write a review of the product you purchase on Amazon/Flipkart.
- Take a screenshot/photo of your review.
- Mail it to disha-rewards@aiets.co.in, along with all your details.

Each month, selected reviewers will win exciting gifts from DISHA Publication. Note that the rewards for each month will be declared in the first week of next month on our website.

https://bit.ly/review-reward-disha.

Contents of Free Sample Book

Topic 1 : Integral Powers of lota, Algebraic Operations of Complex Numbers, Conjugate, Modulus and Argument or Amplitude of a Complex Number
Topic 2 : Rotational Theorem, Square Root of a Complex Number, Cube Roots of Unity, Geometry of Complex Numbers, De-moiver's Theorem, Powers of Complex Numbers
Topic 3 : Solutions of Quadratic Equations, Sum and Product of Roots, Nature of Roots, Relation Between Roots and Co-efficients, Formation of an Equation with Given Roots.
Topic 4 : Condition for Common Roots, Maximum and Minimum value of Quadratic Equation, Quadratic Expression in two Variables, Solution of Quadratic Inequalities.

This sample book is prepared from the book "Disha 144 JEE Main Mathematics Online (2023-2012) \& Offline (2018-2002) Chapter-wise+Topic-wise Previous Years Solved Papers 7th Edition|NCERT Chapterwise PYQ Question Bank with 100\%Detailed Solutions"

ISBN - 9789355644268
MRP- 950/-
In case you like this content, you can buy the Physical Book or E-book using the ISBN provided above.

The book \& e-book are available on all leading online stores.

CLASS XI

1. Sets

Topic 1 : Sets, Types of Sets, Disjoint Sets, Complementary Sets, Subsets, Power Set, Cardinal Number of Sets, Operations on Sets
Topic 2 : Venn Diagrams, De Morgan's Law, Practical Problem
2. Relations and Functions

Topic 1 : Relations, Domain, Codomain and Range of a Relatio Functions, Domain, Codomain and Range of a Function
Topic 2 : Even and Odd Functions, Explicit and Implicit Functions, Greatest Integer Function, Periodic Functions, Value of a Function, Equal Functions, Algebraic Operations on Functions.
3. Trigonometric Functions

A5-A9
Topic 1 : Circular System, Trigonometric Ratios, Domain and Range of Trigonometric Functions, Trigonometric Ratios of Allied Angles
Topic 2 : Trigonometric Identities, Conditional Trigonometric Identities, Greatest and Least Value of Trigonometric Expressions
Topic 3 : Solutions of Trigonometric Equations
4. Principle of Mathematical Induction A10-A10

Topic 1 : Problems Based on Sum of Series, Problems Based on Inequality and Divisibility
5. Complex Numbers and Quadratic Equations

A11-A24
Topic 1 : Integral Powers of lota, Algebraic Operations of Complex Numbers, Conjugate, Modulus and Argument or Amplitude of a Complex Number
Topic 2 : Rotational Theorem, Square Root of a Complex Number, Cube Roots of Unity, Geometry of Complex Numbers, De-moiver's Theorem, Powers of Complex Numbers
Topic 3 : Solutions of Quadratic Equations, Sum and Product of Roots, Nature of Roots, Relation Between Roots and Co-efficients, Formation of an Equation with Given Roots.
Topic 4: Condition for Common Roots, Maximum and Minimum value of Quadratic Equation, Quadratic Expression in two Variables, Solution of Quadratic Inequalities.
6. Linear Inequalities A25-A26

Topic 1 : Solution of Linear Inequality and System of Linear Inequalities, Inequalities of various functions
7. Permutations and Combinations A27-A32
Topic 1 : Fundamental Principle of Counting, Factorials, Permutations, Counting Formula for Permutations, Permutations in Which Things may be Repeated, Permutations in Which all Things are Different, Number of Permutations Under Certain Restricted Conditions, Circular Permutations
Topic 2 : Combinations, Counting Formula for Combinations, Division and Distribution of Objects, Dearrangement Theorem, Sum of Numbers, Important Result About Point
8. Binomial Theorem
Topic 1 : Binomial Theorem for a Positive Integral Index ' x ', Expansion of Binomial, General Term, Coefficient of any Power of ' x '
Topic 2 : Middle Term, Greatest Term, Independent Term, Particular Term from end in Binomial Expansion, Greatest Binomial Coefficients

Topic 3 : Properties of Binomial Coefficients, Number of Terms in the Expansion of $(x+y+z)^{n}$, Binomial theorem for any Index, Multinomial theorem, Infinite Series
9. Sequences and Series

A41-A52
Topic 1 : Arithmetic Progression
Topic 2 : Geometric Progression
Topic 3 : Harmonic Progression, Relation Between A. M., G. M. and H.M. of two Positive Numbers

Topic 4 : Arithmetic-Geometric Sequence (A.G.S.), Some Special Sequences
10. Straight Lines and Pair of Straight Lines A53-A60

Topic 1 : Distance Formula, Section Formula, Results of Triangle, Locus, Equation of Locus, Slope of a Straight Line, Slope of a line joining two points, Parallel and Perpendicular Lines
Topic 2 : Various Forms of Equation of a Line
Topic 3 : Distance Between two Lines, Angle Between two Lines and Bisector of the Angle Between the two Lines, Perpendicular Distance of a Point from a Line, Foot of the Perpendicular, Position of a Point with Respect to a Line, Pedal Points, Condition for Concurrency of Three Lines
Topic 4 : Pair of Straight Lines

11. Conic Sections

A61-A80
Topic 1 : Circles Topic 2 : Parabola
Topic 3 : Ellipse Topic 4 : Hyperbola

12. Limits and Derivatives

A81-A86
Topic 1 : Limit of a Function, Left Hand \& Right Hand limits, Existance of Limits, Sandwitch Theorem, Evaluation of Limits when X $\rightarrow \infty$, Limits by Factorisation, Substitution \& Rationalisation
Topic 2 : Limits Using L-hospital's Rule, Evaluation of Limits of the form 1^{∞}, Limits by Expansion Method
Topic 3 : Derivatives of Polynomial \& Trigonometric Functions, Derivative of Sum, Difference, Product \& Quotient of two functions
13. Mathematical Reasoning

A87-A94
Topic 1 : Statement, Truth value of a statement, Logical Connectives, Truth Table, Logical Equivalance, Tautology \& Contradiction, Duality
Topic 2: Converse, Inverse \& Contrapositive of the Conditional Statement, Negative of a Compound Statement, Algebra of Statement
14. Statistics A95-A100

Topic 1 : Arithmetic Mean, Geometric Mean, Harmonic Mean, Median \& Mode
Topic 2: Quartile, Measures of Dispersion, Quartile Deviation, Mean Deviation, Variance \& Standard Deviation, Coefficient of Variation
15 Probability
A101-A104
Topic 1 : Random Experiment, Sample Space, Events, Probability of an Event, Mutually Exclusive \& Exhaustive Events, Equally Likely Events
Topic 2: Odds Against \& Odds in Favour of an Event, Addition Theorem, Boole's Inequality, Demorgan's Law

Hints \& Solutions (Class XI)

1. Sets
2. Relations and Functions
3. Trigonometric Functions
4. Principle of Mathematical Induction

A105-A106 A107-A110 A111-A120 A121-A121
5. Complex Numbers and Quadratic Equations
6. Linear Inequalities

A148-A149
7. Permutations and Combinations

A150-A161
8. Binomial Theorem A162-A176
9. Sequences and Series

A177-A203
10. Straight Lines and Pair of Straight Lines
11. Conic Sections
12. Limits and Derivatives

A204-A220
A221-A269
A270-A280

CLASS XII

1. Relations and Functions B1-B6
Topic 1:Types of Relations, Inverse of a Relation, Mappings, Mapping of Functions, Kinds of Mapping of Functions
Topic 2 : Composite Functions \& Relations, Inverse of a Function, Binary Operations
2. Inverse Trigonometric Functions

B7-B12
Topic 1 : Trigometric Functions \& Their Inverses, Domain \& Range of Inverse Trigonometric Functions, Principal Value of Inverse Trigonometric Functions, Intervals for Inverse Trigonometric Functions
Topic 2 : Properties of Inverse Trigonometric Functions, Infinite Series of Inverse Trigonometric Functions

B13-B18
Topic 1 : Order of Matrices, Types of Matrices, Addition \& Subtraction of Matrices, Scalar Multiplication of Matrices, Multiplication of Matrices
Topic 2 : Transpose of Matrices, Symmetric \& Skew Symmetric Matrices, Inverse of a Matrix by Elementary Row Operations
4. Determinants B19-B30

Topic 1 : Determinant of Matrices, Singular \& Non-Singular Matrices, Multiplication of two Determinants
Topic 2 : Properties of Determinants, Area of a Triangle
Topic 3: Minor \& Co-factor, Adjoint of a Matrix, Inverse of a Matrix, Some Special Cases of Matrix, Rank of a Matrix
Topic 4 : Solution of System of Linear Equations
5. Continuity and Differentiability

B31-B40
Topic 1 : Continuity
Topic 2 : Differentiability
Topic 3 : Chain Rule of Differentiation, Differentiation of Explicit \& Implicit Functions, Parametric \& Composite Functions, Logarithmic \& Exponential Functions, Inverse Functions, Differentiation by Trigonometric Substitution
Topic 4 : Differentiation of Infinite Series, Successive Differentiation, nth Derivative of Some Standard Functions, Leibnitz's Theorem, Rolle's Theorem, Lagrange's Mean Value Theorem
6. Applications of Derivatives

B41-B50
Topic 1 : Rate of Change of Quantities
Topic 2 : Increasing \& Decreasing Functions
Topic 3 : Tangents \& Normals
Topic 4 : Approximations, Maxima \& Minima
7. Integrals

B51-B70
Topic 1 : Standard Integrals, Integration by Substitution, Integration by Parts
Topic 2 : Integration of the Forms: $\int \mathrm{e}^{\mathrm{x}}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{dx}, \int \mathrm{e}^{\mathrm{kx}}(\mathrm{df}(\mathrm{x})+$ $\left.f^{\prime}(x)\right) d x$, Integration by Partial Fractions, Integration of Some Special Irrational Algebraic Functions, Integration of Different Expressions of e^{x}
Topic 3 : Evaluation of Definite Integral by Substitution, Properties of Definite Integrals
Topic 4 : Summation of Series by Integration
13. Mathematical Reasoning

A281-A290
14. Statistics

A291-A304
15. Probability

A305-A308
8. Applications of Integrals

Topic 1 : Area of the Region Bounded by a Curve \& X-axis Between two Ordinates, Area of the Region Bounded by a Curve \& Y-axis Between two Abscissa
Topic 2 : Different Cases of Area Bounded Between the Curves
9. Differential Equations

B79-B90
Topic 1: Ordinary Differential Equations, Order \& Degree of Differential Equations, Formation of Differential Equations
Topic 2:General \& Particular Solution of Differential Equation, Solution of Differential Equation by the Method of Separation of Variables, Solution of Homogeneous Differential Equations
Topic 3 : Linear Differential Equation of First Order, Differential Equation of the form: $\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}=\mathrm{f}(\mathrm{x})$, Solution by Inspection Method
10. Vector Algebra

B91-B102
Topic 1 : Algebra of Vectors, Section Formula, Linear Dependence \& Independence of Vectors, Position Vector of a Point, Modulus of a Vector, Collinearity of Three points, Coplanarity of Three Vectors \& Four Points, Vector Inequality
Topic 2 : Scalar or Dot Product of two Vectors, Projection of a Vector Along any other Vector, Component of a Vector
Topic 3: Vector or Cross Product of two vectors, Area of a Parallelogram \& Triangle, Scalar \& Vector Tripple Product

1. Three Dimensional Geometry

B103-B118
Topic 1 : Direction Ratios \& Direction cosines of a Line, Angle between two lines in terms of dc's and dr's, Projection of a Point on a Line, Projection of a Line Segment Joining two Points
Topic 2 : Equation of a Straight Line in Cartesian and Vector Form, Angle Between two Lines, Condition of Parallelism \& Perpendicularity of Two Lines, Perpendicular Distance of a Point from a Line, Shortest Distance between two Skew Lines, Distance Between two Parallel Lines.
Topic 3 : Equation of a Plane in Different Forms, Equation of a Plane Passing Through the Intersection of two Given Planes, Coplanarity of two Lines, Angle Between two Planes, Angle Between a Plane and a Line, Distance Between two Parallel Planes, Position of Point and Line wrt a Plane, Projection of a Line on a Plane

12. Probability
 B119-B126

Topic 1 : Multiplication Theorem on Probability, Independent events, Conditional Probability, Baye's Theorem
Topic 2 : Random Variables, Probability Distribution, Bernoulli Trails, Binomial Distribution, Poisson Distribution
13. Properties of Triangles B127-B132

Topic 1 : Properties of Triangle, Solutions of Triangles, Inscribed \& Enscribed Circles, Regular Polygons
Topic 2 : Heights \& Distances

Hints \& Solutions (Class XII)

1. Relations and Functions
2. Inverse Trigonometric Functions
3. Matrices
4. Determinants
5. Continuity and Differentiability
6. Applications of Derivatives
7. Integrals

B133-B140
B141-B149
B150-B158
B159-B178
B179-B199
B200-B222
B223-B263
8. Applications of Integrals

B133-B392
9. Differential Equations

B264-B284
10. Vector Algebra

B312-B334
11. Three Dimensional Geometry
12. Probability
13. Properties of Triangles

B335-B369
B370-B382
B383-B392

144 JaE Main Mathematics

Online (2023-2012) \& Offline (2018-2002) Chapter-wîse Topic-wîse
Previous Year Solved Papers

7th Edition

Divided ir.

- 126 Online Pape, 23 < 012 ,

126 Online Pape, $\quad 23$ < 012 ,

- 18 Offline Papers (2018-2002)
- 100\% Detailed Solution
- 3940+ MCQs ε vulvV) Question Bank
- Includes 24 Sets held in 2023 Session I \& II

DSHA

Publication Inc

5 Complex Numbers and Quadratic Equations

Integral Powers of lota, Algebraic Operations of Complex Numbers, Conjugate, Modulus and Argument or Amplitude of a Complex Number

1. If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in \mathbb{C}, \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to
[April 15, 2023 (I)]
(a) 36
(b) 42
(c) 27
(d) 30
2. Let $S=\left\{z \in C: \bar{z}=i\left(z^{2}+\operatorname{Re}(\bar{z})\right)\right\}$. Then $\sum_{z \in S}|z|^{2}$ is equal to
[April 13, 2023 (II)]
(a) $\frac{7}{2}$
(b) 4
(c) $\frac{5}{2}$
(d) 3
3. For $\mathrm{a} \in \mathrm{C}$, let $\mathrm{A}=\{\mathrm{z} \in \mathrm{C}: \operatorname{Re}(\mathrm{a}+\overline{\mathrm{z}})>\operatorname{Im}(\overline{\mathrm{a}}+\mathrm{z})\}$ and $B=\{z \in C: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$. Then among the two statements :
(S1) : If $\operatorname{Re}(A), \operatorname{Im}(A)>0$, then the set A contains all the real numbers.
(S2) : If $\operatorname{Re}(A), \operatorname{Im}(A)<0$, then the set B contains all the real numbers.
[April 11, 2023 (II)]
(a) Only (S1) is true
(b) both are false
(c) Only (S2) is true
(d) Both are true
4. Let $S=\left\{z \in C-\{i, 2 i\}: \frac{z^{2}+8 i z-15}{z^{2}-3 i z-2} \in R\right\}$. If $\alpha-\frac{13}{11} \mathrm{i} \in \mathrm{S}, \alpha \in \mathbb{R}-\{0\}$, then $242 \alpha^{2}$ is equal to
[NA, April 11, 2023 (II)]
5. Let the complex number $\mathrm{z}=\mathrm{x}+$ iy be such that $\frac{2 z-3 i}{2 z+i}$ is purely imaginary. If $x+y^{2}=0$, then $y^{4}+y^{2}-y$ is equal to:
[April 10, 2023 (I)]
(a) $\frac{3}{2}$
(b) $\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $\frac{3}{4}$
6. Let $\mathrm{S}=\left\{\mathrm{z}=\mathrm{x}+\mathrm{iy}: \frac{2 \mathrm{z}-3 \mathrm{i}}{4 \mathrm{z}+2 \mathrm{i}}\right.$ is a real number $\}$. Then which of the following is NOT correct?
(a) $y+x^{2}+y^{2} \neq-\frac{1}{4}$
[April 10, 2023 (II)]
(b) $x=0$
(c) $(\mathrm{x}, \mathrm{y})=\left(0,-\frac{1}{2}\right)$
(d) $\mathrm{y} \in\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, \infty\right)$
7. Let $\mathrm{A}=\left\{\theta \in(0,2 \pi): \frac{1+2 \mathrm{i} \sin \theta}{1-\mathrm{i} \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in A is
[April 8, 2023 (II)]
(a) π
(b) 2π
(c) 4π
(d) 3π
8. Let $\mathrm{a} \neq \mathrm{b}$ be two non-zero real numbers.

Then the number of elements in the set
$X=\left\{z \in C: \operatorname{Re}\left(a z^{2}+b z\right)=a\right.$ and $\left.\operatorname{Re}\left(b z^{2}+a z\right)=b\right\}$ is equal to
[April 6, 2023 (II)]
(a) 1
(b) 3
(c) 0
(d) 2
9. Let $\mathrm{z}=1+\mathrm{i}$ and $\mathrm{z}_{1}=\frac{1+\mathrm{i} \overline{\mathrm{z}}}{\overline{\mathrm{z}}(1-\mathrm{z})+\frac{1}{\mathrm{z}}}$. then $\frac{12}{\pi} \arg \left(\mathrm{z}_{1}\right)$ is equal to \qquad .
[NA, Jan. 30, 2023 (I)]
10. For two non-zero complex number z_{1} and z_{2}, if $\operatorname{Re}\left(z_{1} z_{2}\right)$ $=0$ and $\operatorname{Re}\left(z_{1}+z_{2}\right)=0$, then which of the following are possible?
[Jan. 29, 2023 (I)]
(A) $\operatorname{Im}\left(z_{1}\right)>0$ and $\operatorname{Im}\left(z_{2}\right)>0$
(B) $\operatorname{Im}\left(\mathrm{z}_{1}\right)<0$ and $\operatorname{Im}\left(\mathrm{z}_{2}\right)>0$
(C) $\operatorname{Im}\left(\mathrm{z}_{1}\right)>0$ and $\operatorname{Im}\left(\mathrm{z}_{2}\right)<0$
(D) $\operatorname{Im}\left(\mathrm{z}_{1}\right)<0$ and $\operatorname{Im}\left(\mathrm{z}_{2}\right)<0$

Choose the correct answer from the options given below:
(a) B and D
(b) B and C
(c) A and B
(d) A and C
11. Let $z_{1}=2+3 i$ and $z_{2}=3+4 i$. The set
$S=\left\{z \in C:\left|z-z_{1}\right|^{2}-\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}\right\}$
represents a
[Jan. 25, 2023 (I)]
(a) straight line with sum of its intercepts on the coordinate axes equals 14
(b) hyperbola with the length of the transverse axis 7
(c) straight line with the sum of its intercepts on the coordinate axes equals -18
(d) hyperbola with eccentricity 2
12. Let S be the set of all $(\alpha, \beta), \pi<\alpha, \beta<2 \pi$, for which the complex number $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely imaginary and $\frac{1-i \cos \beta}{1+2 i \sin \beta}$ is purely real. Let $Z \alpha \beta=\sin 2 \alpha+i \cos 2 \beta$, $(\alpha, \beta) \in \mathrm{S}$. Then $\sum_{(\alpha, \beta) \in \mathrm{S}}\left(i Z_{\alpha \beta}+\frac{1}{i \bar{Z} \alpha \beta}\right)$ is equal to
[July 27, 2022 (II)]
(a) 3
(b) $3 i$
(c) 1
(d) $2-1$
13. If $z=x+$ iy satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then
[July 26, 2022 (II)]
(a) $x+2 y-4=0$
(b) $x^{2}+y-4=0$
(c) $x+2 y+4=0$
(d) $x^{2}-y+3=0$
14. For $z \in C$ if the minimum value of $(|z-3 \sqrt{2}|+|z-p \sqrt{2} i|)$ is $5 \sqrt{2}$, then a value of p is
[July 25, 2022 (II)]
(a) 3
(b) $\frac{7}{2}$
(c) 4
(d) $\frac{9}{2}$
15. The real part of the complex number $\frac{(1+2 i)^{8} \cdot(1-2 i)^{2}}{(3+2 i) \cdot \overline{(4-6 i)}}$ is equal to:
[June 30, 2022 (I)]
(a) $\frac{500}{13}$
(b) $\frac{110}{13}$
(c) $\frac{55}{6}$
(d) $\frac{550}{13}$
16. Let z_{1} and z_{2} be two complex numbers such that $\overline{\mathrm{z}}_{1}=\mathrm{i} \overline{\mathrm{z}}_{2}$ and $\arg \left(\frac{z_{1}}{\bar{z}_{2}}\right)=\pi$. Then
[June 25, 2022 (II)]
(a) $\arg z_{2}=\frac{\pi}{4}$
(b) $\arg z_{2}=-\frac{3 \pi}{4}$
(c) $\arg z_{1}=\frac{\pi}{4}$
(d) $\arg z_{1}=-\frac{3 \pi}{4}$
17. The least positive integer n such that $\frac{(2 i)^{n}}{(1-i)^{n-2}}, i=\sqrt{-1}$ is a positive integer, is \qquad . [NA, Aug. 26, 2021 (II)]
18. If the real part of the complex number $z=\frac{3+2 i \cos \theta}{1-3 i \cos \theta}, \theta \in\left(0, \frac{\pi}{2}\right)$ is zero, then the value of $\sin ^{2} 3 \theta+\cos ^{2} \theta$ is equal to \qquad . [NA, July 27, 2021 (III)]
19. Let a complex number $\mathrm{z},|\mathrm{z}| \neq 1$, satisfy $\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \leq 2$. Then, the largest value of $|z|$ is equal to.
[2019(S), March 16, 2021(I)]
(a) 8
(b) 7
(c) 6
(d) 5
20. Let z and w be two complex numbers such that $\mathrm{w}=\mathrm{z} \overline{\mathrm{z}}-2 \mathrm{z}+2,\left|\frac{\mathrm{z}+\mathrm{i}}{\mathrm{z}-3 \mathrm{i}}\right|=1$ and $\operatorname{Re}(\mathrm{w})$ has minimum value. Then, the minimum value of $n \in N$ for which w^{n} is real, is equal to
[NA, March 16, 2021 (I)]
21. The least value of $|z|$ where z is complex number which satisfies the inequality
$\exp \frac{(|\mathrm{z}|+3)(|z|-1)}{||z|+1|} \log _{e} 2 \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|, i=\sqrt{-1}$, is equal to:
[March 16, 2021 (II)]
(a) 2
(b) 8
(c) 3
(d) $\sqrt{5}$
22. If the least and the largest real values of α, for which the equation $z+\alpha|z-1|+2 i=0(z \in C$ and $i=\sqrt{-1})$ has a solution, are p and q respectively, then $4\left(p^{2}+q^{2}\right)$ is equal to \qquad .
[2018(s), NA, Feb. 24, 2021(I)]
23. If z_{1}, z_{2} are complex numbers such that $\operatorname{Re}\left(z_{1}\right)=\left|z_{1}-1\right|$, $\operatorname{Re}\left(z_{2}\right)=\left|z_{2}-1\right|$ and $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{6}$, then $\operatorname{Im}\left(z_{1}+z_{2}\right)$ is equal to :
[Sep. 03, 2020 (II)]
(a) $\frac{2}{\sqrt{3}}$
(b) $2 \sqrt{3}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\frac{1}{\sqrt{3}}$
24. Let z be a complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2}$. Then the value of $|z+3 i|$ is :
[Jan. 9, 2020 (I)]
(a) $\sqrt{10}$
(b) $\frac{7}{2}$
(c) $\frac{15}{4}$
(d) $2 \sqrt{3}$
25. If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi]$, is a real number, then an argument of $\sin \theta+i \cos \theta$ is: [2019(s), Jan. 7, 2020 (II)]
(a) $\pi-\tan ^{-1}\left(\frac{4}{3}\right)$
(b) $\pi-\tan ^{-1}\left(\frac{3}{4}\right)$
(c) $-\tan ^{-1}\left(\frac{3}{4}\right)$
(d) $\tan ^{-1}\left(\frac{4}{3}\right)$
26. The equation $|z-i|=|z-1|, i=\sqrt{-1}$, represents:
[April 12, 2019 (I)]
(a) a circle of radius $\frac{1}{2}$.
(b) the line through the origin with slope 1 .
(c) a circle of radius 1 .
(d) the line through the origin with slope -1 .
27. Let $z \in \mathrm{C}$ with $\operatorname{Im}(z)=10$ and it satisfies $\frac{2 z-n}{2 z+n}=2 i-1$ for some natural number n. Then : [April 12, 2019 (III)]
(a) $n=20$ and $\operatorname{Re}(z)=-10$
(b) $n=40$ and $\operatorname{Re}(z)=10$
(c) $n=40$ and $\operatorname{Re}(z)=-10$
(d) $n=20$ and $\operatorname{Re}(z)=10$
28. If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+i)^{2}}{\mathrm{a}-i}$, has magnitude $\sqrt{\frac{2}{5}}$, then $\overline{\mathrm{z}}$ is equal to :
[April 10, 2019 (I)]
(a) $-\frac{1}{5}-\frac{3}{5} i$
(b) $-\frac{3}{5}-\frac{1}{5} i$
(c) $\frac{1}{5}-\frac{3}{5} i$
(d) $-\frac{1}{5}+\frac{3}{5} i$
29. If $\frac{z-\alpha}{z+\alpha}(\alpha \in \mathrm{R})$ is a purely imaginary number and $|z|=2$, then a value of α is :
[Jan. 12, 2019 (I)]
(a) 2
(b) 1
(c) $\frac{1}{2}$
(d) $\sqrt{2}$
30. For all complex numbers z of the form $1+i \alpha, \alpha \in R$, if $z^{2}=x+i y$, then
[Online April 19, 2014]
(a) $y^{2}-4 x+2=0$
(b) $y^{2}+4 x-4=0$
(c) $y^{2}-4 x-4=0$
(d) $y^{2}+4 x+2=0$
31. Let $\mathrm{z} \neq-\mathrm{i}$ be any complex number such that $\frac{\mathrm{z}-\mathrm{i}}{\mathrm{z}+\mathrm{i}}$ is a purely imaginary number. Then $\mathrm{z}+\frac{1}{\mathrm{z}}$ is:
[Online April 9, 2013(S) \& 12, 2014]
(a) zero
(b) any non-zero real number other than 1.
(c) any non-zero real number.
(d) a purely imaginary number.
32. If $\mathrm{z}_{1}, \mathrm{z}_{2}$ and $\mathrm{z}_{3}, \mathrm{z}_{4}$ are 2 pairs of complex conjugate numbers, then $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$ equals:
[Online April 11, 2014]
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{2}$
(d) π
33. Let $\mathrm{w}(\operatorname{Im} \mathrm{w} \neq 0)$ be a complex number. Then the set of all complex number z satisfying the equation $\mathrm{w}-\overline{\mathrm{w}} \mathrm{Z}=\mathrm{k}(1-\mathrm{z})$, for some real number k , is
[Online April 9, 2014]
(a) $\{\mathrm{z}:|\mathrm{z}|=1\}$
(b) $\{\mathrm{z}: \mathrm{z}=\overline{\mathrm{z}}\}$
(c) $\{\mathrm{z}: \mathrm{z} \neq 1\}$
(d) $\{\mathrm{z}:|\mathrm{z}|=1, \mathrm{z} \neq 1\}$
34. If z is a complex number of unit modulus and $\operatorname{argument} \theta$, then $\arg \left(\frac{1+z}{1+\bar{z}}\right)$ equals:
[2013]
(a) $-\theta$
(b) $\frac{\pi}{2}-\theta$
(c) θ
(d) $\pi-\theta$
35. Let $a=\operatorname{Im}\left(\frac{1+z^{2}}{2 i z}\right)$, where z is any non-zero complex number. The set $\mathrm{A}=\{a:|z|=1$ and $z \neq \pm 1\}$ is equal to:
[Online April 23, 2013]
(a) $(-1,1)$
(b) $[-1,1]$
(c) $[0,1)$
(d) $(-1,0]$
36. $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}$ is equal to [Online May 26, 2012]
(a) $2\left(\left|z_{1}\right|+\left|z_{2}\right|\right)$
(b) $2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
(c) $\left|z_{1}\right|\left|z_{2}\right|$
(d) $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
37. The number of complex numbers z such that $|z-1|=|z+1|=|z-i|$ equals
[2010]
(a) 1
(b) 2
(c) ∞
(d) 0
38. The conjugate of a complex number is $\frac{1}{i-1}$ then that complex number is
[2008]
(a) $\frac{-1}{i-1}$
(b) $\frac{1}{i+1}$
(c) $\frac{-1}{i+1}$
(d) $\frac{1}{i-1}$
39. If $z=x-i y$ and $z^{\frac{1}{3}}=p+i q$, then $\left(\frac{x}{p}+\frac{y}{q}\right) /\left(p^{2}+q^{2}\right)$ is equal to
[2004]
(a) -2
(b) -1
(c) 2
(d) 1
40. Let z and w be complex numbers such that $\bar{z}+i \bar{w}=0$ and $\arg z w=\pi$. Then $\arg \mathrm{z}$ equals
[2002(S), 2004]
(a) $\frac{5 \pi}{4}$
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{\pi}{4}$
41. If $\left(\frac{1+i}{1-i}\right)^{x}=1$ then
[2003]
(a) $x=2 n+1$, where n is any positive integer
(b) $x=4 n$, where n is any positive integer
(c) $x=2 n$, where n is any positive integer
(d) $x=4 n+1$, where n is any positive integer.
42. If z and ω are two non-zero complex numbers such that $|z \omega|=1$ and $\operatorname{Arg}(z)-\operatorname{Arg}(\omega)=\frac{\pi}{2}$, then $\bar{z} \omega$ is equal to
[2003]
(a) -1
(b) 1
(c) $-i$
(d) i
43. If $|z-4|<|z-2|$, its solution is given by
[2002]
(a) $\operatorname{Re}(z)>0$
(b) $\operatorname{Re}(z)<0$
(c) $\operatorname{Re}(z)>3$
(d) $\operatorname{Re}(z)>2$

Topic 2
 Rotational Theorem, Square Root of a Complex Number, Cube Roots of Unity, Geometry of Complex Numbers, De-moiver's Theorem, Powers of Complex Numbers

44. Let $\omega=\mathrm{z} \overline{\mathrm{z}}+\mathrm{k}_{1} \mathrm{z}+\mathrm{k}_{2} \mathrm{iz}+\lambda(1+\mathrm{i}), \mathrm{k}_{1}, \mathrm{k}_{2} \in \mathbb{R}$. Let $\operatorname{Re}(\omega)=0$ be the circle C of radius 1 in the first quadrant touching the line $y=1$ and the y-axis. If the curve $\operatorname{Im}(\omega)=0$ intersects C at A and B , then $30(\mathrm{AB})^{2}$ is equal to \qquad
[NA, April 13, 2023 (I)]
45. Let w_{1} be the point obtained by the rotation of $\mathrm{z}_{1}=5+4 \mathrm{i}$ about the origin through a right angle in the anticlockwise direction, and w_{2} be the point obtained by the rotation of $z_{2}=3+5 i$ about the origin through a right angle in the clockwise direction. Then the principal argument of $\mathrm{w}_{1}-\mathrm{w}_{2}$ is equal to
[April 11, 2023 (I)]
(a) $-\pi+\tan ^{-1} \frac{33}{5}$
(b) $-\pi-\tan ^{-1} \frac{33}{5}$
(c) $-\pi+\tan ^{-1} \frac{8}{9}$
(d) $\pi-\tan ^{-1} \frac{8}{9}$
46. If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation
[April 8, 2023 (I)]
(a) $\mathrm{x}^{2}+7 \mathrm{x}+12=0$
(b) $\mathrm{x}^{2}+3 \mathrm{x}-4=0$
(c) $x^{2}+2 x-3=0$
(d) $x^{2}+x-12=0$
47. If the center and radius of the circle $\left|\frac{z-2}{z-3}\right|=2$ are respectively (α, β) and γ, then $3(\alpha+\beta+\gamma)$ is equal to
(a) 12
(b) 11
(c) 9
(d) 10
48. For all $\mathrm{z} \in \mathrm{C}$ on the curve $\mathrm{C}_{1}:|\mathrm{z}|=4$, let the locus of the point $\mathrm{z}+\frac{1}{\mathrm{z}}$ be the curve C_{2}. Then
[Jan. 31, 2023 (I)]
(a) the curves C_{1} and C_{2} intersect at 4 points
(b) the curves C_{1} lies inside C_{2}
(c) the curves C_{1} and C_{2} intersect at 2 points
(d) the curves C_{2} lies inside C_{1}
49. The complex number $\mathrm{z}=\frac{\mathrm{i}-1}{\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}}$ is equal to:
[Jan. 31, 2023 (II)]
(a) $\sqrt{2}\left(\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}\right)$
(b) $\cos \frac{\pi}{12}-\mathrm{i} \sin \frac{\pi}{12}$
(c) $\sqrt{2}\left(\cos \frac{\pi}{12}+\mathrm{i} \sin \frac{\pi}{12}\right)$
(d) $\sqrt{2} \mathrm{i}\left(\cos \frac{5 \pi}{12}-\mathrm{i} \sin \frac{5 \pi}{12}\right)$
50. Let $\alpha=8-14 \mathrm{i}, \mathrm{A}=\left\{\mathrm{z} \in \mathbb{C}: \frac{\alpha \mathrm{z}-\overline{\alpha z}}{\mathrm{z}^{2}-(\overline{\mathrm{z}})^{2}-112 \mathrm{i}}=\mathrm{i}\right\}$ and $B=\{z \in \mathbb{C}:|z+3 i|=4\}$. Then $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)$ is equal to \qquad .
[NA, Jan. 29, 2023 (II)]
51. Let $\alpha_{1}, \alpha_{2}, ., \alpha_{7}$ be the roots of the equation $x^{7}+3 x^{5}-$ $13 x^{3}-15 x=0$ and $\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right| \geq . . \geq\left|\alpha_{7}\right|$. Then $\alpha_{1} \alpha_{2}-$ $\alpha_{3} \alpha_{4}+\alpha_{5} \alpha_{6}$ is equal to \qquad .[NA, Jan. 29, 2023 (II)]
52. Let $\mathrm{S}=\left\{\alpha: \log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(\frac{5}{3} \cdot 3^{2 \alpha-4}+1\right)=2\right\}$. Then the maximum value of β for which the equation $x^{2}-2\left(\sum_{\alpha \in S} \alpha\right)^{2} x+\sum_{\alpha \in S}(\alpha+1)^{2} \beta=0$ has real roots is
\qquad
\qquad [NA, Jan. 25, 2023 (I)]
53. Let z be a complex number such that $\left|\frac{z-2 i}{z+i}\right|=2, z \neq-i$. Then z lies on the circle of radius 2 and centre
[Jan. 25, 2023 (II)]
(a) $(2,0)$
(b) $(0,0)$
(c) $(0,2)$
(d) $(0, .2)$
54. Let $p, q \in R$ and $(1-\sqrt{3} i)^{200}=2^{199}(p+i q), i=\sqrt{-1}$. Then $p+q+q^{2}$ and $p-q+q^{2}$ are roots of the equation.
[Jan. 24, 2023 (I)]
(a) $x^{2}+4 x-1=0$
(b) $x^{2}-4 x+1=0$
(c) $x^{2}+4 x+1=0$
(d) $x^{2}-4 x-1=0$
55. The value of $\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^{3}$ is
[Sep. 02, 2020 (I), Jan. 24, 2023 (II)]
(a) $\frac{-1}{2}(1-i \sqrt{3})$
(b) $\frac{1}{2}(1-i \sqrt{3})$
(c) $\frac{-1}{2}(\sqrt{3}-i)$
(d) $\frac{1}{2}(\sqrt{3}+i)$
56. If $z=2+3 i$, then $z^{5}+(\bar{z})^{5}$ is equal to :
[July 29, 2022 (I)]
(a) 244
(b) 224
(c) 245
(d) 265
57. Let $S=\{z=x+i y:|z-1+i| \geq|z|,|z|<2,|z+\mathrm{i}|=|z-1|\}$. Then the set of all values of x, for which $w=2 x+i y \in S$ for some $y \in \mathbb{R}$, is
[July 29, 2022 (II)]
(a) $\left(-\sqrt{2}, \frac{1}{2 \sqrt{2}}\right]$
(b) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{4}\right]$
(c) $\left(-\sqrt{2}, \frac{1}{2}\right]$
(d) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}}\right]$
58. If $z \neq 0$ be a complex number such that $\left|z-\frac{1}{z}\right|=2$, then the maximum value of $|z|$ is:
[July 29, 2022 (II)]
(a) $\sqrt{2}$
(b) 1
(c) $\sqrt{2}-1$
(d) $\sqrt{2}+1$
59. Let $S_{1}=\left\{z_{1} \in C:\left|z_{1}-3\right|=\frac{1}{2}\right\}$ and
$S_{2}=\left\{z_{2} \in C:\left|z_{2}-\left|z_{2}+1\right|\right|=\left|z_{2}+\left|z_{2}-1\right|\right|\right\}$. Then, for $z_{1} \in S_{1}$ and $z_{2} \in S_{2}$, the least value of $\left|z_{2}-z_{1}\right|$ is :
[July 28, 2022(I)]
(a) 0
(b) $\frac{1}{2}$
(c) $\frac{3}{2}$
(d) $\frac{5}{2}$
60. Let $\mathrm{z}=a+i b, b \neq 0$ be complex numbers satisfying $z^{2}=\bar{z} \cdot 2^{1-|z|}$. Then the least value of $n \in N$, such that $\mathrm{z}^{\mathrm{n}}=$ $(z+1)^{n}$, is equal to \qquad .
[NA, July 28, 2022(II)]
61. Let the minimum value v_{0} of $v=|z|^{2}+|z-3|^{2}+|z-6 i|^{2}$, $z \in \mathbb{C}$ is attained at $z=z_{0}$. Then $\left|2 z_{0}^{2}-\bar{z}_{0}^{3}+3\right|^{2}+v_{0}^{2}$ is equal to
[July 27, 2022 (I)]
(a) 1000
(b) 1024
(c) 1105
(d) 1196
62. Let O be the origin and A be the point $\mathrm{z}_{1}=1+2 i$. If B is the point $z_{2}, \operatorname{Re}\left(z_{2}\right)<0$, such that OAB is a right angled isosceles triangle with OB as hypotenuse, then which of the following is NOT true?
[July 26, 2022 (I)]
(a) $\arg z_{2}=\pi-\tan ^{-1} 3$
(b) $\arg \left(\mathrm{z}_{1}-2 \mathrm{z}_{2}\right)=-\tan ^{-1} \frac{4}{3}$
(c) $\left|z_{2}\right|=\sqrt{10}$
(d) $\left|2 z_{1}-z_{2}\right|=5$
63. For $n \in \mathbf{N}$, let $S_{n}=\left\{z \in \boldsymbol{C}:|z-3+2 i|=\frac{n}{4}\right\}$ and $T_{n}=$ $\left\{z \in \boldsymbol{C}:|z-2+3 i|=\frac{1}{n}\right\}$. Then the number of elements in the set $\left\{n \in \mathbf{N}: S_{n} \cap T_{n}=\phi\right\}$ is: [July 25, 2022 (I)]
(a) 0
(b) 2
(c) 3
(d) 4
64. Let $S=\{z \in C:|z-2| \leq 1, z(1+i)+\bar{z}(1-i) \leq 2\}$. Let $|z-4 i|$ attains minimum and maximum values, respectively, at $z_{1} \in S$ and $z_{2} \in S$. If $5\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)=$ $\alpha+\beta \sqrt{5}$, where α and β are integers, then the value of $\alpha+\beta$ is equal to \qquad -
[NA, June 29, 2022 (I)]
65. Let $\arg (z)$ represent the principal argument of the complex number z. The $|z|=3$ and $\arg (z-1)-\arg (z+1)=\frac{\pi}{4}$ intersect:
[June 29, 2022 (III]
(a) Exactly at one point
(b) Exactly at two points
(c) Nowhere
(d) At infinitely many points.
66. The number of elements in the $\operatorname{set}\{z=a+i b \in \mathbb{C}: a$, $b \in \mathbb{Z}$ and $1<|z-3+2 i|<4\}$ is \qquad
[NA, June 28, 2022 (I)]
67. Sum of squares of modulus of all the complex numbers z satisfying $\bar{z}=i z^{2}+z^{2}-z$ is equal to \qquad .
[NA, June 28, 2022 (II)]
68. The area of the polygon, whose vertices are the non-real roots of the equation $\bar{z}=i z^{2}$ is : [June 27, 2022 (I)]
(a) $\frac{3 \sqrt{3}}{4}$
(b) $\frac{3 \sqrt{3}}{2}$
(c) $\frac{3}{2}$
(d) $\frac{3}{4}$
69. Let $A=\left\{z \in C:\left|\frac{z+1}{z-1}<1\right|\right\}$ and
$B=\left\{z \in C: \arg \left(\frac{z-1}{z+1}\right)=\frac{2 \pi}{3}\right\}$
Then $A \cap B$ is :
[2021(S), June 26, 2022 (I)]
(a) a portion of a circle centred at $\left(0,-\frac{1}{\sqrt{3}}\right)$ that lies in the second and third quadrants only
(b) a portion of a circle centred at $\left(0,-\frac{1}{\sqrt{3}}\right)$ that lies in the second quadrant only
(c) an empty set
(d) a portion of a circle of radius $\frac{2}{\sqrt{3}}$ that lies in the third quadrant only
70. If $\mathrm{z}^{2}+\mathrm{z}+1=0, \mathrm{z} \in \mathrm{C}$, then $\left|\sum_{n=1}^{15}\left(z^{n}+(-1)^{n} \frac{1}{z^{n}}\right)^{2}\right|$ is equal to \qquad .
[NA, June 26, 2022 (II)]
71. Let $A=\{z \in C: 1 \leq|z-(1+i)| \leq 2\}$ and
$B=\{z \in A:|z-(1-i)|=1\}$. Then, B : [June 24, 2022 (I)]
(a) is an empty set
(b) contains exactly two elements
(c) contains exactly three elements
(d) is an infinite set
72. Let $S=\{z \in \mathbb{C}:|z-3| \leq 1$ and $z(4+3 i)+\bar{z}(4-3 i) \leq 24\}$. If $\alpha+i \beta$ is the point in S which is closest to $4 i$, then $25(\alpha+\beta)$ is equal to \qquad .
[NA, June 24, 2022 (II)]
73. If for the complex numbers z satisfying $|z-2-2 i| \leq 1$, the maximum value of $|3 i z+6|$ is attained at $\mathrm{a}+i \mathrm{~b}$, then $a+b$ is equal to \qquad .
[2014(S), NA, Sep. 1, 2021 (II)]
74. If z is a complex number such that $\frac{z-i}{z-1}$ is purely imaginary, then the minimum value of $|z-(3+3 i)|$ is :
[2019(S), Aug. 27, 31, 2021 (II)]
(a) $2 \sqrt{2}-1$
(b) $3 \sqrt{2}$
(c) $6 \sqrt{2}$
(d) $2 \sqrt{2}$
75. Let z_{1} and z_{2} be two complex numbers such that arg $\left(z_{1}-z_{2}\right)=\frac{\pi}{4}$ and z_{1}, z_{2} satisfy the equation $|z-3|=$ $\operatorname{Re}(z)$. Then the imaginary part of $z_{1}+z_{2}$ is equal to
\qquad -.
[NA, Aug. 27, 2021 (II)]
76. Let $\mathrm{z}=\frac{1-i \sqrt{3}}{2}, i=\sqrt{-1}$. Then the value of
$21+\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)^{3}+\left(\mathrm{z}^{2}+\frac{1}{\mathrm{z}^{2}}\right)^{3}+\left(\mathrm{z}^{3}+\frac{1}{\mathrm{z}^{3}}\right)^{3}+\ldots+\left(\mathrm{z}^{21}+\frac{1}{\mathrm{z}^{21}}\right)^{3}$ is \qquad .
[NA, Aug. 26, 2021 (I)]
77. Let $\mathrm{z}_{1}, \mathrm{z}_{2}$ be the roots of the equation $\mathrm{z}^{2}+\mathrm{az}+12=0$ and $\mathrm{z}_{1}, \mathrm{z}_{2}$ form an equilateral triangle with origin. Then, the value of $|a|$ is \qquad -
[NA, March 18, 2021 (I)]
78. Let a complex number be $\mathrm{w}=1-\sqrt{3}$ i. Let another complex number z be such that $|z w|=1$ and $\arg (z)-\arg (w)$ $=\frac{\pi}{2}$. Then the area of the triangle with vertices origin, z and w is equal to :
[March 18, 2021 (II)]
(a) $\frac{1}{2}$
(b) 2
(c) 4
(d) $\frac{1}{4}$
79. If $f(x)$ and $g(x)$ are two polynomials such that the polynomial $\mathrm{P}(x)=f(x)^{3}+x g\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then $\mathrm{P}(1)$ is equal to \qquad .[NA, March 18, 2021 (II)]
80. Let S_{1}, S_{2} and S_{3} be three sets defined as
$S_{1}=\{z \in \mathbb{C}:|z-1| \leq \sqrt{2}\}$
$\mathrm{S}_{2}=\{\mathrm{z} \in \mathbb{C}: \operatorname{Re}((1-\mathrm{i}) \mathrm{z}\} \geq 1\}$
$\mathrm{S}_{3}=\{\mathrm{z} \in \mathbb{C}: \operatorname{lm}(\mathrm{z}) \leq 1\}$
Then the set $S_{1} \cap S_{2} \cap S_{3}$
[March 17, 2021 (II)]
(a) Has infinitely many elements
(b) Is a singleton
(c) Has exactly three elements
(d) Has exactly two elements
81. Let z be those complex numbers which satisfy $|\mathrm{z}+5| \leq 4$ and $z(1+i)+\bar{z}(1-i) \geq-10, i=\sqrt{-1}$. If the maximum value of $|z+1|^{2}$ is $\alpha+\beta \sqrt{2}$, then the value of $(\alpha+\beta)$ is
\qquad —.
[NA, Feb. 26, 2021 (II)]
82. The sum of $162^{\text {th }}$ power of the roots of the equation $\mathrm{x}^{3}-2 \mathrm{x}^{2}+2 \mathrm{x}-1=0$ is \qquad .
[NA, Feb. 26, 2021 (I)]
83. Let $i=\sqrt{-1}$. If $\frac{(-1+i \sqrt{3})^{21}}{(1-i)^{24}}+\frac{(1+i \sqrt{3})^{21}}{(1+i)^{24}}=k$, and $n=[|k|]$ be the greatest integral part of $|k|$.
Then $\sum_{j=0}^{n+5}(j+5)^{2}-\sum_{j=0}^{n+5}(j+5)$ is equal to \qquad .
[NA, Feb.24, 2021(II)]
84. Let $z=x+i y$ be a non-zero complex number such that $z^{2}=i|z|^{2}$, where $i=\sqrt{-1}$, then z lies on the:
[Sep. 06, 2020 (II)]
(a) line, $y=-x$
(b) imaginary axis
(c) line, $y=x$
(d) real axis
85. The value of $\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}$ is : [Sep. 05, 2020 (III)]
(a) -2^{15}
(b) $2^{15} i$
(c) $-2^{15} i$
(d) 6^{5}
86. If the four complex numbers $z, \bar{z}, \bar{z}-2 \operatorname{Re}(\bar{z})$ and $z-2 \operatorname{Re}(z)$ represent the vertices of a square of side 4 units in the Argand plane, then $|z|$ is equal to :
[Sep. 05, 2020 (I)]
(a) $4 \sqrt{2}$
(b) 4
(c) $2 \sqrt{2}$
(d) 2
87. If a and b are real numbers such that $(2+\alpha)^{4}=a+b \alpha$, where $\alpha=\frac{-1+i \sqrt{3}}{2}$, then $a+b$ is equal to :
[Sep. 04, 2020 (II)]
(a) 9
(b) 24
(c) 33
(d) 57
88. If $\left(\frac{1+i}{1-i}\right)^{m / 2}=\left(\frac{1+i}{i-1}\right)^{n / 3}=1,(m, n \in \mathbf{N})$, then the greatest common divisor of the least values of m and n is
\qquad -.
[NA, Sep. 03, 2020 (I)]
89. The imaginary part of $(3+2 \sqrt{-54})^{1 / 2}-(3-2 \sqrt{-54})^{1 / 2}$ can be :
[Sep. 02, 2020 (II)]
(a) $-\sqrt{6}$
(b) $-2 \sqrt{6}$
(c) 6
(d) $\sqrt{6}$
90. If z be a complex number satisfying $|\operatorname{Re}(z)|+|\operatorname{Im}(z)|=4$, then $|z|$ cannot be:
[Jan. 9, 2020 (II)]
(a) $\sqrt{\frac{17}{2}}$
(b) $\sqrt{10}$
(c) $\sqrt{7}$
(d) $\sqrt{8}$
91. Let $\alpha=\frac{-1+i \sqrt{3}}{2}$. If $a=(1+\alpha) \sum_{k=0}^{100} \alpha^{2 k}$ and $b=$ $\sum_{k=0}^{100} \alpha^{3 k}$, then a and b are the roots of the quadratic equation:
[Jan. 8, 2020 (II)]
(a) $x^{2}+101 x+100=0$
(b) $x^{2}-102 x+101=0$
(c) $x^{2}-101 x+100=0$
(d) $x^{2}+102 x+101=0$
92. If $\operatorname{Re}\left(\frac{z-1}{2 z+i}\right)=1$, where $z=x+i y$, then the point (x, y) lies on a :
[Jan. 7, 2020 (I)]
(a) circle whose centre is at $\left(-\frac{1}{2},-\frac{3}{2}\right)$.
(b) straight line whose slope is $-\frac{2}{3}$.
(c) straight line whose slope is $\frac{3}{2}$.
(d) circle whose diameter is $\frac{\sqrt{5}}{2}$.
93. Let $z \in \mathrm{C}$ be such that $|z|<1$. If $\omega=\frac{5+3 z}{5(1-z)}$, then :
[April 09, 2019 (II)]
(a) $5 \operatorname{Re}(\omega)>4$
(b) $4 \operatorname{Im}(\omega)>5$
(c) $5 \operatorname{Re}(\omega)>1$
(d) $5 \operatorname{Im}(\omega)<1$
94. If $z=\frac{\sqrt{3}}{2}+\frac{i}{2},(i=\sqrt{-1})$, then $\left(1+i z+z^{5}+i z^{8}\right)^{9}$ is equal to:
[April 08, 2019 (II)]
(a) 0
(b) 1
(c) $(-1+2 i)^{9}$
(d) -1
95. Let $\left(-2-\frac{1}{3} i\right)^{3}=\frac{x+i y}{27}(i=\sqrt{-1})$, where x and y are real numbers then $\mathrm{y}-\mathrm{x}$ equals :
[Jan. 11, 2019 (I)]
(a) 91
(b) -85
(c) 85
(d) -91
96. Let $z=\left(\frac{\sqrt{3}}{2}+\frac{\mathrm{i}}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{\mathrm{i}}{2}\right)^{5}$. If $\mathrm{R}(z)$ and $\mathrm{I}(z)$ respectively denote the real and imaginary parts of z, then:
[Jan. 10, 2019 (II)]
(a) $\mathrm{I}(z)=0$
(b) $\mathrm{R}(z)>0$ and $\mathrm{I}(z)>0$
(c) $\mathrm{R}(z)<0$ and $\mathrm{I}(z)>0$
(d) $\mathrm{R}(z)=-$ (c)
97. Let z_{1} and z_{2} be any two non-zero complex numbers such that $3\left|z_{1}\right|=4\left|z_{2}\right|$. If $z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}$ then:
[Jan. 102019 (II)]
(a) $\operatorname{Re}(\mathrm{z})=0$
(b) $|z|=\sqrt{\frac{5}{2}}$
(c) $|\mathrm{z}|=\frac{1}{2} \sqrt{\frac{17}{2}}$
(d) $\operatorname{Im}(z)=0$
98. The least positive integer n for which $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{n}=1$, is
[Online April 16, 2018]
(a) 2
(b) 6
(c) 5
(d) 3
99. The point represented by $2+\mathrm{i}$ in the Argand plane moves 1 unit eastwards, then 2 units northwards and finally from there $2 \sqrt{2}$ units in the south-westwards direction. Then its new position in the Argand plane is at the point represented by :
[Online April 9, 2016]
(a) $1+\mathrm{i}$
(b) $2+2 i$
(c) $-2-2 \mathrm{i}$
(d) $-1-\mathrm{i}$
100. A complex number z is said to be unimodular if $|z|=1$. Suppose z_{1} and z_{2} are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}$ is unimodular and z_{2} is not unimodular. Then the point z_{1} lies on a :
[2015]
(a) circle of radius 2 .
(b) circle of radius $\sqrt{2}$.
(c) straight line parallel to x-axis
(d) straight line parallel to y-axis.
101. If z is a non-real complex number, then the minimum value of $\frac{\operatorname{lm} z^{5}}{(\operatorname{lm} z)^{5}}$ is :
[Online April 11, 2015]
(a) -1
(b) -4
(c) -2
(d) -5
102. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies :
[2012]
(a) either on the real axis or on a circle passing through the origin.
(b) on a circle with centre at the origin
(c) either on the real axis or on a circle not passing through the origin.
(d) on the imaginary axis.
103. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{7}=A+B \omega$. Then (A, B) equals
[2011]
(a) $(1,1)$
(b) $(1,0)$
(c) $(-1,1)$
(d) $(0,1)$
104. If $|z+4| \leq 3$, then the maximum value of $|z+1|$ is
[2007]
(a) 6
(b) 0
(c) 4
(d) 10
105. If $\omega=\frac{z}{z-\frac{1}{3} i}$ and $|\omega|=1$, then z lies on
[2005]
(a) an ellipse
(b) a circle
(c) a straight line
(d) a parabola
106. If z_{1} and z_{2} are two non- zero complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\arg z_{1}-\arg z_{2}$ is equal to
[2005]
(a) $\frac{\pi}{2}$
(b) $-\pi$
(c) 0
(d) $\frac{-\pi}{2}$
107. If the cube roots of unity are $1, \omega, \omega^{2}$ then the roots of the equation $(x-1)^{3}+8=0$, are
[2005]
(a) $-1,-1+2 \omega,-1-2 \omega^{2}$
(b) $-1,-1,-1$
(c) $-1,1-2 \omega, 1-2 \omega^{2}$
(d) $-1,1+2 \omega, 1+2 \omega^{2}$
108. If $\left|z^{2}-1\right|=|z|^{2}+1$, then z lies on
[2004]
(a) an ellipse
(b) the imaginary axis
(c) a circle
(d) the real axis
109. The locus of the centre of a circle which touches the circle $\left|z-z_{1}\right|=a$ and $\left|\mathrm{z}-\mathrm{z}_{2}\right|=b$ externally $\left(z, z_{1} \& z_{2}\right.$ are complex numbers) will be
[2002]
(a) an ellipse
(b) a hyperbola
(c) a circle
(d) none of these

Solutions of Quadratic Equations, Sum and Product of Roots, Nature of Roots, Relation Between Roots and Co-efficients, Formation of an Equation with Given Roots

110. Let α, β be the roots of the equation $x^{2}-\sqrt{2} x+2=0$.

Then $\alpha^{14}+\beta^{14}$ is equal to
[April 13, 2023 (II)]
(a) $-64 \sqrt{2}$
(b) $-128 \sqrt{2}$
(c) -64
(d) -128
111. Let α, β be the roots of the quadratic equation $x^{2}+\sqrt{6} x+3=0$. Then $\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}$ is equal to
[April 12, 2023 (I)]
(a) 729
(b) 72
(c) 81
(d) 9
112. If a and b are the roots of equation $x^{2}-7 x-1=0$, then the value of $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ is equal to \qquad -.
[NA, April 11, 2023 (I)]
113. The number of points, where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in \mathbb{R}$ cuts x-axis, is equal to
[NA, April 11, 2023 (II)]
114. Let $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^{2} x}+9^{\tan ^{2} x}=10\right\}$ and $\beta=\sum_{x \in S} \tan ^{2}\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta-14)^{2}$ is equal to [April 10, 2023 (II)]
(a) 32
(b) 8
(c) 64
(d) 16
115. Let α, β, γ be the three roots of the equation $x^{3}+b x+c$ $=0$. If $\beta \gamma=1=-\alpha$, then $b^{3}+2 c^{3}-3 \alpha^{3}-6 \beta^{3}-8 \gamma^{3}$ is equal to
[April 8, 2023 (I)]
(a) 21
(b) $\frac{169}{8}$
(c) 19
(d) $\frac{155}{8}$
116. The sum of all the roots of the equation $\left|x^{2}-8 x+15\right|-$ $2 x+7=0$ is:
[April 6, 2023 (I)]
(a) $9+\sqrt{3}$
(b) $11+\sqrt{3}$
(c) $9-\sqrt{3}$
(d) $11-\sqrt{3}$
117. The number of intergral values of k, for which one root of the equation $2 x^{2}-8 x+k=0$ lies in the interval $(1,2)$ and its other root lies in the interval $(2,3)$, is :
[Feb. 1, 2023 (II)]
(a) 1
(b) 3
(c) 0
(d) 2
118. Let a, b be two real numbers such that $\mathrm{ab}<0$. If the complex number $\frac{1+a \mathrm{a}}{\mathrm{b}+\mathrm{i}}$ is of unit modulus and $\mathrm{a}+\mathrm{ib}$ lies on the circle $|z-1|=|2 z|$, then a possible value of $\frac{1+(a)}{4 b}$, where $[\mathrm{t}$] is greatest integer function, is:
[Feb. 1, 2023 (II)]
(a) 1
(b) $-\frac{1}{2}$
(c) -1
(d) $\frac{1}{2}$
119. The number of real roots of the equation $\sqrt{x^{2}-4 x+3}+\sqrt{x^{2}-9}=\sqrt{4 x^{2}-14 x+6}$, is:
[Jan. 31, 2023 (I)]
(a) 0
(b) 1
(c) 3
(d) 2
120. Let $\lambda \neq 0$ be a real number. Let α, β be the roots of the equation $14 x^{2}-31 x+3 \lambda=0$ and α, γ be the roots of the equation $35 x^{2}-53 x+4 \lambda=0$. Then $\frac{3 \alpha}{\beta}$ and $\frac{4 \alpha}{\gamma}$ are the roots of the equation :
[Jan. 29, 2023 (I)]
(a) $7 \mathrm{x}^{2}+245 \mathrm{x}-250=0$
(b) $7 \mathrm{x}^{2}-245 \mathrm{x}+250=0$
(c) $49 \mathrm{x}^{2}-245 \mathrm{x}+250=0$
(d) $49 x^{2}+245 x+250=0$
121. Let $\mathrm{a} \in \mathrm{R}$ and let α, β be the roots of the equation $\mathrm{x}^{2}+$ $60^{\frac{1}{4}} x+a=0$. If $\alpha^{4}+\beta^{4}=-30$, then the product of all possible values of a is \qquad . [NA, Jan. 25, 2023 (II)]
122. The equation $x^{2}-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
[Jan. 24, 2023 (I)]
(a) exactly two solutions in $(-\infty, \infty)$
(b) no solution
(c) a unique solution in $(-\infty, 1)$
(d) a unique solution in $(-\infty, \infty)$
123. The number of real solutions of the equation $3\left(x^{2}+\frac{1}{x^{2}}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is [NA, Jan. 24, 2023 (III)]
124. Let $S=\left\{\theta \in(0,2 \pi): 7 \cos ^{2} \theta-3 \sin ^{2} \theta-2 \cos ^{2} 2 \theta=2\right\}$. Then, the sum of roots of all the equations $x^{2}-2\left(\tan ^{2} \theta\right.$ $\left.+\cot ^{2} \theta\right) x+6 \sin ^{2} \theta=0, \theta \in S$, is \qquad .
[NA, July 29, 2022 (I)]
125. Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x^{2}-x-4=0$. If $p_{n}=\alpha^{n}-\beta^{n}, n \in \mathbb{N}$, then $\frac{P_{15} P_{16}-P_{14} P_{16}-P_{15}^{2}+P_{14} P_{15}}{P_{13} P_{14}}$ is equal to \qquad -.
[2003(S), 2015(S), 2018(S), 2019(S), 2020(S), 2021(S),
NA, July 29, 2022 (II)]
126. The sum of all real values of x for which
$\frac{3 x^{2}-9 x+17}{x^{2}+3 x+10}=\frac{5 x^{2}-7 x+19}{3 x^{2}+5 x+12}$ is equal to \qquad .
[NA, July 28, 2022(I)]
127. Let α, β be the roots of the equation $x^{2}-\sqrt{2} x+\sqrt{6}=0$ and $\frac{1}{\alpha^{2}}+1, \frac{1}{\beta^{2}}+1$ be the roots of the equation $x^{2}+a x+b=0$. Then the roots of the equation $x^{2}-(a+b-2) x+(a+b+2)=0$ are: [28 July, 2022(II)]
(a) non-real complex numbers
(b) real and both negative
(c) real and both positive
(d) real and exactly one of them is positive
128. Let $S=\left\{\mathrm{z} \in \mathbb{C}: z^{2}+\bar{z}=0\right\}$. Then $\sum_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to \qquad -.
[NA, 27 July, 2022 (I)]
129. If α, β are the roots of the equation

$$
x^{2}-\left(5+3^{\sqrt{\log _{3}{ }^{5}}}-5^{\sqrt{\log _{5}{ }^{3}}}\right) x+3\left(3^{\left(\log _{3} 5\right)^{\frac{1}{3}}}-5^{(\log 3)^{\frac{2}{3}}}-1\right)=0
$$

then the equation, whose roots are $\alpha+\frac{1}{\beta}$ and $\beta+\frac{1}{\alpha}$,
[July 27, 2022 (II)]
(a) $3 x^{2}-20 x-12=0$
(b) $3 x^{2}-10 x-4=0$
(c) $3 x^{2}-10 x+2=0$
(d) $3 x^{2}-20 x+16=0$
130. The minimum value of the sum of the squares of the roots of $x^{2}+(3-a) x+1=2 a$ is:
[July 26, 2022 (II)]
(a) 4
(b) 5
(c) 6
(d) 8
131. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}+x^{3}+x^{2}+x+$ $1=0$, then $\alpha^{2021}+\beta^{2021}+\gamma^{2021}+\delta^{2021}$ is equal to:
[July 25, 2022 (I)]
(a) -4
(b) -1
(c) 1
(d) 4
132. Let α and β be the roots of the equation $x^{2}+(2 i-1)$ $=0$. Then, the value of $\left|\alpha^{8}+\beta^{8}\right|$ is equal to:
[June 29, 2022 (I)]
(a) 50
(b) 250
(c) 1250
(d) 1500
133. Let α be a root of the equation $1+x^{2}+x^{4}=0$. Then the value of $\alpha^{1011}+\alpha^{2022}-\alpha^{3033}$ is equal to:
[June 29, 2022 (II)]
(a) 1
(b) α
(c) $1+\alpha$
(d) $1+2 \alpha$
134. The number of real solutions of the equation $e^{4 x}+4 e^{3 x}-58 e^{2 x}+4 e^{x}+1=0$ is \qquad .
[2021(S), NA, June 28, 2022 (I)]
135. Let $f(x)$ be a quadratic polynomial such that $f(-2)+f(3)=0$. If one of the roots of $f(x)=0$ is -1 , then the sum of the roots of $f(x)=0$ is equal to \quad [June 28, 2022 (III)]
(a) $\frac{11}{3}$
(b) $\frac{7}{3}$
(c) $\frac{13}{3}$
(d) $\frac{14}{3}$
136. Let α, β be the roots of the equation $x^{2}-4 \lambda x+5=0$ and α, γ be the roots of the equation
$x^{2}-(3 \sqrt{2}+2 \sqrt{3}) x+7+3 \lambda \sqrt{3}=0$. If $\beta+\gamma=3 \sqrt{2}$, then $(\alpha+2 \beta+\gamma)^{2}$ is equal to \qquad .
[NA, June 27, 2022 (II)]
137. The sum of the cubes of all the roots of the equation $x^{4}-3 x^{3}-2 x^{2}+3 x+1=0$ is \qquad .
[NA, June 26, 2022 (I)]
138. Let p and q be two real numbers such that $p+q=3$ and $p^{4}+q^{4}=369$. Then $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}$ is equal to \qquad -
[NA, June 26, 2022 (II)]
139. If the sum of the squares of the reciprocals of the roots α and β of the equation $3 x^{2}+\lambda x-1=0$ is 15 , then $6\left(\alpha^{3}+\beta^{3}\right)^{2}$ is equal to :
[June 24, 2022 (I)]
(a) 18
(b) 24
(c) 36
(d) 96
140. The sum of all the real roots of the equation $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^{x}+1\right)=0$ is $\quad[J u n e 24,2022$ (III)]
(a) $\log _{e} 3$
(b) $-\log _{e} 3$
(c) $\log _{e} 6$
(d) $-\log _{e} 6$
141. The sum of all integral values of $k(k \neq 0)$ for which the equation $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ in x has no real roots, is [NA, Aug. 26, 2021 (I)]
142. Let α, β be two roots of the equation $\mathrm{x}^{2}+(20)^{1 / 4} \mathrm{x}+(5)^{1 / 2}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to
[July 20(S), July 27, 2021 (I)]
(a) 10
(b) 100
(c) 50
(d) 160
143. The number of real solutions of the equation, $x^{2}-|x|-12=$ 0 is:
[July 25, 2021 (II)]
(a) 2
(b) 3
(c) 1
(d) 4
144. The number of solutions of the equation
$\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x>0$,
is
[NA, July 20, 2021 (III)]
145. The value of $3+\frac{1}{4+\frac{1}{3+\frac{1}{4+\frac{1}{3+\ldots \infty}}}}$ is equal to
[March 17(s), March 18, 2021 (I)]
(a) $2+\sqrt{3}$
(b) $3+2 \sqrt{3}$
(c) $4+\sqrt{3}$
(d) $1.5+\sqrt{3}$
146. The number of solutions of the equation $\log _{4}(\mathrm{x}-1)=\log _{2}(\mathrm{x}-3)$ is \qquad .
[NA, Feb. 26, 2021 (I)]
147. Let α and β be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1$. Let $p_{n}=(\alpha)^{n}+(\beta)^{n}, p_{n-1}=11$ and $p_{n+1}=29$ for some integer $n \geq 1$. Then, the value of p_{n}^{2} is
\qquad .
[NA, Feb. 26, 2021 (III)]
148. If $\alpha, \beta \in R$ are such that $1-2 i\left(\right.$ here $\left.i^{2}=-1\right)$ is a root of $z^{2}+\alpha z+\beta=0$, then $(\alpha-\beta)$ is equal to:
[Feb. 25, 2021 (II)]
(a) -3
(b) -7
(c) 7
(d) 3
149. If $e^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots . \infty\right) \log _{e} 2}$ satisfies the equation $t^{2}-9 t+8=0$, then the value of
$\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0<x<\frac{\pi}{2}\right)$ is
[Feb. 24, 2021(I)]
(a) $2 \sqrt{3}$
(b) $\frac{3}{2}$
(c) $\sqrt{3}$
(d) $\frac{1}{2}$
150. The number of the real roots of the equation

$$
(x+1)^{2}+|x-5|=\frac{27}{4} \text { is }
$$

\qquad -
[2014(S), NA, Feb. 24, 2021 (II)]
151. If α and β be two roots of the equation $x^{2}-64 x+256=0$.

Then the value of $\left(\frac{\alpha^{3}}{\beta^{5}}\right)^{\frac{1}{8}}+\left(\frac{\beta^{3}}{\alpha^{5}}\right)^{\frac{1}{8}}$ is:
[Sep. 06, 2020 (I)]
(a) 2
(b) 3
(c) 1
(d) 4
152. If α and β are the roots of the equation $2 x(2 x+1)=1$, then β is equal to:
[Sep. 06, 2020 (II)]
(a) $2 \alpha(\alpha+1)$
(b) $-2 \alpha(\alpha+1)$
(c) $2 \alpha(\alpha-1)$
(d) $2 \alpha^{2}$
153. The product of the roots of the equation $9 x^{2}-18|x|+5=0$, is :
[Sep. 05, 2020 (I)]
(a) $\frac{5}{9}$
(b) $\frac{25}{81}$
(c) $\frac{5}{27}$
(d) $\frac{25}{9}$
154. If α and β are the roots of the equation, $7 x^{2}-3 x-2=0$, then the value of $\frac{\alpha}{1-\alpha^{2}}+\frac{\beta}{1-\beta^{2}}$ is equal to :
[Sep. 05, 2020 (II)]
(a) $\frac{27}{32}$
(b) $\frac{1}{24}$
(c) $\frac{3}{8}$
(d) $\frac{27}{16}$
155. Let $u=\frac{2 z+i}{z-k i}, z=x+i y$ and $k>0$. If the curve represented by $\operatorname{Re}(\mathrm{u})+\operatorname{Im}(\mathrm{u})=1$ intersects the y-axis at the points P and Q where $P Q=5$, then the value of k is :
[Sep. 04, 2020 (I)]
(a) $3 / 2$
(b) $1 / 2$
(c) 4
(d) 2
156. If α and β are the roots of the equation $x^{2}+p x+2=0$ and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the equation $2 x^{2}+2 q x+1$ $=0$, then $\left(\alpha-\frac{1}{\alpha}\right)\left(\beta-\frac{1}{\beta}\right)\left(\alpha+\frac{1}{\beta}\right)\left(\beta+\frac{1}{\alpha}\right)$ is equal to :
[Sep. 03, 2020 (I)]
(a) $\frac{9}{4}\left(9+q^{2}\right)$
(b) $\frac{9}{4}\left(9-q^{2}\right)$
(c) $\frac{9}{4}\left(9+p^{2}\right)$
(d) $\frac{9}{4}\left(9-p^{2}\right)$
157. The set of all real values of λ for which the quadratic equations, $\left(\lambda^{2}+1\right) x^{2}-4 \lambda x+2=0$ always have exactly one root in the interval $(0,1)$ is :
[Sep. 03, 2020 (II)]
(a) $(0,2)$
(b) $(2,4]$
(c) $(1,3]$
(d) $(-3,-1)$
158. The least positive value of ' a ' for which the equation, $2 x^{2}+(a-10) x+\frac{33}{2}=2 a$ has real roots is \qquad -.
[NA, Jan. 8, 2020 (I)]
159. If the equation, $x^{2}+b x+45=0(b \in R)$ has conjugate complex roots and they satisfy $|z+1|=2 \sqrt{10}$, then:
[Jan. 8, 2020 (I)]
(a) $b^{2}-b=30$
(b) $b^{2}+b=72$
(c) $b^{2}-b=42$
(d) $b^{2}+b=12$
160. Let α and β be two real roots of the equation $(k+1) \tan ^{2} x$ $-\sqrt{2} \cdot \lambda \tan x=(1-k)$, where $k(\neq-1)$ and λ are real numbers. If $\tan ^{2}(\alpha+\beta)=50$, then a value of λ is:
[Jan. 7, 2020 (I)]
(a) $10 \sqrt{2}$
(b) 10
(c) 5
(d) $5 \sqrt{2}$
161. If α and β are the roots of the quadratic equation, $x^{2}+x \sin$ $\theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right)$, then $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ is equal to:
[April 10, 2019 (I)]
(a) $\frac{2^{12}}{(\sin \theta-4)^{12}}$
(b) $\frac{2^{12}}{(\sin \theta+8)^{12}}$
(c) $\frac{2^{12}}{(\sin \theta-8)^{6}}$
(d) $\frac{2^{6}}{(\sin \theta+8)^{12}}$
162. The number of real roots of the equation
$5+\left|2^{x}-1\right|=2^{x}\left(2^{x}-2\right)$ is:
[April 10, 2019 (II)]
(a) 3
(b) 2
(c) 4
(d) 1
163. Let $p, q \in R$. If $2-\sqrt{3}$ is a root of the quadratic equation, $x^{2}+p x+q=0$, then:
[April 9, 2019 (I)]
(a) $\mathrm{p}^{2}-4 \mathrm{q}+12=0$
(b) $q^{2}-4 p-16=0$
(c) $\mathrm{q}^{2}+4 \mathrm{p}+14=0$
(d) $\mathrm{p}^{2}-4 \mathrm{q}-12=0$
164. If m is chosen in the quadratic equation
$\left(m^{2}+1\right) x^{2}-3 x+\left(m^{2}+1\right)^{2}=0$
such that the sum of its roots is greatest, then the absolute difference of the cubes of its roots is:
[2003(S), Jan 10, 2019 II(S), April 09, 2019 (II)]
(a) $10 \sqrt{5}$
(b) $8 \sqrt{3}$
(c) $8 \sqrt{5}$
(d) $4 \sqrt{3}$
165. The sum of the solutions of the equation $|\sqrt{x}-2|+\sqrt{x}(\sqrt{x}-4)+2=0,(x>0)$ is equal to:
[April 8, 2019 (I)]
(a) 9
(b) 12
(c) 4
(d) 10
166. If α and β be the roots of the equation $x^{2}-2 x+2=0$, then the least value of n for which $\left(\frac{\alpha}{\beta}\right)^{n}=1$ is :
(a) 2
(b) 5
(c) 4
(d) 3
[April 8, 2019 (I)]
167. If λ be the ratio of the roots of the quadratic equation in $x, 3 m^{2} x^{2}+m(m-4) x+2=0$, then the least value of m for which $\lambda+\frac{1}{\lambda}=1$, is :
[Jan. 12, 2019 (I)]
(a) $2-\sqrt{3}$
(b) $4-3 \sqrt{2}$
(c) $-2+\sqrt{2}$
(d) $4-2 \sqrt{3}$
168. If one real root of the quadratic equation $81 x^{2}+k x+256=0$ is cube of the other root, then a value of k is :
[Jan. 11, 2019 (I)]
(a) -81
(b) 100
(c) 144
(d) -300
169. Consider the quadratic equation $(c-5) x^{2}-2 c x+(c-4)=0$, $\mathrm{c} \neq 5$. Let S be the set of all integral values of c for which one root of the equation lies in the interval $(0,2)$ and its other root lies in the interval $(2,3)$. Then the number of elements in S is:
[Jan. 10, 2019 (I)]
(a) 18
(b) 12
(c) 10
(d) 11
170. The number of all possible positive integral values of α for which the roots of the quadratic equation, $6 x^{2}-11 x+\alpha=0$ are rational numbers is:
[Jan. 09, 2019 (II)]
(a) 3
(b) 2
(c) 4
(d) 5
171. If both the roots of the quadratic equation $x^{2}-m x+4=0$ are real and distinct and they lie in the interval [1,5], then m lies in the interval: [Jan. 09, 2019 (II)]
(a) $(-5,-4)$
(b) $(4,5)$
(c) $(5,6)$
(d) $(3,4)$
172. Let z_{0} be a root of the quadratic equation, $x^{2}+x+1=0$. If $z=3+6 i z_{0}^{81}-3 i z_{0}^{93}$, then $\arg z$ is equal to:
[Jan. 09, 2019 (II)]
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) 0
173. Let p, q and r be real numbers ($\mathrm{p} \neq \mathrm{q}, \mathrm{r} \neq 0$), such that the roots of the equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to.
[Online April 16, 2018]
(a) $p^{2}+q^{2}+r^{2}$
(b) $p^{2}+q^{2}$
(c) $2\left(p^{2}+q^{2}\right)$
(d) $\frac{p^{2}+q^{2}}{2}$
174. If an angle A of a $\Delta \mathrm{ABC}$ satisfies $5 \cos \mathrm{~A}+3=0$, then the roots of the quadratic equation, $9 x^{2}+27 x+20=0$ are.
[Online April 16, 2018]
(a) $\sin A, \sec A$
(b) $\sec A, \tan A$
(c) $\tan A, \cos A$
(d) $\sec A, \cot A$
175. If $\tan A$ and $\tan B$ are the roots of the quadratic equation, $3 x^{2}-10 x-25=0$ then the value of $3 \sin ^{2}(A+B)-10 \sin (A+B) \cdot \cos (A+B)-25 \cos ^{2}(A+B)$ is
[Online April 15, 2018]
(a) 25
(b) -25
(c) -10
(d) 10
176. If $f(x)$ is a quadratic expression such that $f(1)+f(2)=0$, and -1 is a root of $f(x)=0$, then the other root of $f(x)=0$ is
[Online April 15, 2018]
(a) $-\frac{5}{8}$
(b) $-\frac{8}{5}$
(c) $\frac{5}{8}$
(d) $\frac{8}{5}$
177. If, for a positive integer n, the quadratic equation,
$\mathrm{x}(\mathrm{x}+1)+(\mathrm{x}+1)(\mathrm{x}+2)+\ldots .+(\mathrm{x}+\overline{\mathrm{n}-1})(\mathrm{x}+\mathrm{n})$
$=10 \mathrm{n}$ has two consecutive integral solutions, then n is equal to:
[2017]
(a) 11
(b) 12
(c) 9
(d) 10
178. The sum of all the real values of x satisfying the equation $2^{(\mathrm{x}-1)\left(\mathrm{x}^{2}+5 \mathrm{x}-50\right)}=1$ is : [2016(S), Online April 9, 2017]
(a) 16
(b) 14
(c) -4
(d) -5
179. Let $p(x)$ be a quadratic polynomial such that $p(0)=1$. If $\mathrm{p}(\mathrm{x})$ leaves remainder 4 when divided by $\mathrm{x}-1$ and it leaves remainder 6 when divided by $x+1$; then :
[Online April 8, 2017]
(a) $\mathrm{p}(2)=11$
(b) $\mathrm{p}(2)=19$
(c) $\mathrm{p}(-2)=19$
(d) $\mathrm{p}(-2)=11$
180. If x is a solution of the equation, $\sqrt{2 \mathrm{x}+1}-\sqrt{2 \mathrm{x}-1}=1$, $\left(x \geq \frac{1}{2}\right)$, then $\sqrt{4 x^{2}-1}$ is equal to :
[Online April 10, 2016]
(a) $\frac{3}{4}$
(b) $\frac{1}{2}$
(c) $2 \sqrt{2}$
(d) 2
181. If the two roots of the equation, $(a-1)\left(x^{4}+x^{2}+1\right)+$ $(a+1)\left(x^{2}+x+1\right)^{2}=0$ are real and distinct, then the set of all values of ' a ' is : [Online April 11, 2015]
(a) $\left(0, \frac{1}{2}\right)$
(b) $\left(-\frac{1}{2}, 0\right) \cup\left(0, \frac{1}{2}\right)$
(c) $\left(-\frac{1}{2}, 0\right)$
(d) $(-\infty,-2) \cup(2, \infty)$
182. If $2+3 i$ is one of the roots of the equation $2 x^{3}-9 x^{2}+k x-13=0, \mathrm{k} \in \mathrm{R}$, then the real root of this equation :
[Online April 10, 2015]
(a) exists and is equal to $-\frac{1}{2}$.
(b) exists and is equal to $\frac{1}{2}$.
(c) exists and is equal to 1 .
(d) does not exist.
183. If $a \in \mathrm{R}$ and the equation

$$
-3(x-[x])^{2}+2(x-[x])+a^{2}=0
$$

(where $[x]$ denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval:
[2014]
(a) $(-2,-1)$
(b) $(-\infty,-2) \cup(2, \infty)$
(c) $(-1,0) \cup(0,1)$
(d) $(1,2)$
184. The equation $\sqrt{3 \mathrm{x}^{2}+\mathrm{x}+5}=\mathrm{x}-3$, where x is real, has;
[Online April 19, 2014]
(a) no solution
(b) exactly one solution
(c) exactly two solution
(d) exactly four solution
185. If α and β are roots of the equation,
$x^{2}-4 \sqrt{2} k x+2 e^{4 l n k}-1=0$ for some k, and $\alpha^{2}+\beta^{2}=66$, then $\alpha^{3}+\beta^{3}$ is equal to:
[Online April 11, 2014]
(a) $248 \sqrt{2}$
(b) $280 \sqrt{2}$
(c) $-32 \sqrt{2}$
(d) $-280 \sqrt{2}$
186. If $\frac{1}{\sqrt{\alpha}}$ and $\frac{1}{\sqrt{\beta}}$ are the roots of the equation,
$a x^{2}+b x+1=0(a \neq 0, a, b \in R)$, then the equation, $x\left(x+b^{3}\right)+\left(a^{3}-3 a b x\right)=0$ as roots :
[Online April 9, 2014]
(a) $\alpha^{3 / 2}$ and $\beta^{3 / 2}$
(b) $\alpha \beta^{1 / 2}$ and $\alpha^{1 / 2} \beta$
(c) $\sqrt{\alpha \beta}$ and $\alpha \beta$
(d) $\alpha^{-\frac{3}{2}}$ and $\beta^{-\frac{3}{2}}$
187. If p and q are non-zero real numbers and $\alpha^{3}+\beta^{3}=-p, \alpha \beta=q$, then a quadratic equation whose roots are $\frac{\alpha^{2}}{\beta}, \frac{\beta^{2}}{\alpha}$ is :
[Online April 25, 2013]
(a) $p x^{2}-q x+p^{2}=0$
(b) $q x^{2}+p x+q^{2}=0$
(c) $p x^{2}+q x+p^{2}=0$
(d) $q x^{2}-p x+q^{2}=0$
188. If α and β are roots of the equation $x^{2}+p x+\frac{3 p}{4}=0$, such that $|\alpha-\beta|=\sqrt{10}$, then p belongs to the set :
[Online April 22, 2013]
(a) $\{2,-5\}$ (b) $\{-3,2\}$
(c) $\{-2,5\}$
(d) $\{3,-5\}$

189 If a complex number z statisfies the equation $z+\sqrt{2}|z+1|+i=0$, then $|z|$ is equal to :
[Online April 22, 2013]
(a) 2
(b) $\sqrt{3}$
(c) $\sqrt{5}$
(d) 1
190. Let $p, q, r \in R$ and $r>p>0$. If the quadratic equation $p x^{2}+q x+r=0$ has two complex roots α and β, then $|\alpha|+|\beta|$ is
[Online May 19, 2012]
(a) equal to 1
(b) less than 2 but not equal to 1
(c) greater than 2
(d) equal to 2
191. If the sum of the square of the roots of the equation $x^{2}-(\sin \alpha-2) x-(1+\sin \alpha)=0$ is least, then α is equal to
[Online May 12, 2012]
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
192. The value of k for which the equation $(k-2) x^{2}+8 x+k+4=0$ has both roots real, distinct and negative is
[Online May 7, 2012]
(a) 6
(b) 3
(c) 4
(d) 1
193. Let for $\mathrm{a} \neq a_{1} \neq 0, f(x)=a x^{2}+b x+c$,
$g(x)=a_{1} x^{2}+b_{1} x+c_{1}$ and $p(x)=f(x)-g(x)$.
If $p(x)=0$ only for $x=-1$ and $p(-2)=2$, then the value of $p(2)$ is :
[2011 RS]
(a) 3
(b) 9
(c) 6
(d) 18
194. Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots $(4,3)$. Rahul made a mistake in writing down coefficient of x to get roots $(3,2)$. The correct roots of equation are :
[2011 RS]
(a) 6,1
(b) 4,3
(c) $-6,-1$
(d) $-4,-3$
195. Let α, β be real and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line $\operatorname{Re} z=1$, then it is necessary that:
[2011]
(a) $\beta \in(-1,0)$
(b) $|\beta|=1$
(c) $\beta \in(1, \infty)$
(d) $\beta \in(0,1)$
196. If the roots of the equation $b x^{2}+c x+a=0$ be imaginary, then for all real values of x, the expression $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is :
[2009]
(a) less than $4 a b$
(b) greater than $-4 a b$
(c) 1ess than $-4 a b$
(d) greater than $4 a b$
197. If the difference between the roots of the equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$, then the set of possible values of a is
[2007]
(a) $(3, \infty)$
(b) $(-\infty,-3)$
(c) $(-3,3)$
(d) $(-3, \infty)$
198. If the roots of the quadratic equation $x^{2}+p x+q=0$ are $\tan 30^{\circ}$ and $\tan 15^{\circ}$, respectively, then the value of $2+q-$ p is
[2005(S), 2006]
(a) 2
(b) 3
(c) 0
(d) 1
199. If $z^{2}+z+1=0$, where z is complex number, then the value of $\left(z+\frac{1}{z}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\left(z^{3}+\frac{1}{z^{3}}\right)^{2}$

$$
\begin{equation*}
+\ldots \ldots \ldots+\left(z^{6}+\frac{1}{z^{6}}\right)^{2} \text { is } \tag{2006}
\end{equation*}
$$

(a) 18
(b) 54
(c) 6
(d) 12
200. If the roots of the equation $x^{2}-b x+c=0$ be two consecutive integers, then $b^{2}-4 c$ equals
[2005]
(a) -2
(b) 3
(c) 2
(d) 1
201. If one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation $x^{2}+p x+q=0$ has equal roots, then the value of ' q ' is
[2004]
(a) 4
(b) 12
(c) 3
(d) $\frac{49}{4}$
202. If $(1-p)$ is a root of quadratic equation $x^{2}+p x+(1-p)=0$ then its root are
[2004]
(a) $-1,2$
(b) $-1,1$
(c) $0,-1$
(d) 0,1
203. Product of real roots of the equation $t^{2} x^{2}+|x|+9=0$
[2002]
(a) is always positive
(b) is always negative
(c) does not exist
(d) none of these
204. Difference between the corresponding roots of $x^{2}+a x+b$ $=0$ and $x^{2}+b x+a=0$ is same and $a \neq b$, then [2002]
(a) $a+b+4=0$
(b) $a+b-4=0$
(c) $a-b-4=0$
(d) $a-b+4=0$
205. If $\alpha \neq \beta$ but $\alpha^{2}=5 \alpha-3$ and $\beta^{2}=5 \beta-3$ then the equation having α / β and β / α as its roots is
[2002]
(a) $3 x^{2}-19 x+3=0$
(b) $3 x^{2}+19 x-3=0$
(c) $3 x^{2}-19 x-3=0$
(d) $x^{2}-5 x+3=0$.

Condition for Common Roots, Maximum and Minimum value of
Topic 4 Quadratic Expression, Quadratic Expression in two Variables, Solution of Quadratic Inequalities
206. The number of real roots of the equation
$\mathrm{x}|\mathrm{x}|-5|\mathrm{x}+2|+6=0$, is \quad [NA, April 15, 2023 (I)]
(a) 5
(b) 3
(c) 6
(d) 4
207. Let m and n be the numbers of real roots of the quadratic equations $x^{2}-12 x+[x]+31=0$ and $x^{2}-5|x+2|-4=0$ respectively, where $[\mathrm{x}]$ denotes the greatest integer $\leq \mathrm{x}$. Then $m^{2}+m n+n^{2}$ is equal to \qquad .
[NA, April 8, 2023 (II)]
208. Let $S=\left\{x: x \in \mathbb{R}(\sqrt{3}+\sqrt{2})^{x^{2}-4}+(\sqrt{3}-\sqrt{2})^{x^{2}-4}=10\right\}$. Then $n(\mathrm{~S})$ is equal to
[Feb. 1, 2023 (I)]
(a) 4
(b) 0
(c) 6
(d) 2
209. The equation $\mathrm{e}^{4 \mathrm{x}}+8 \mathrm{e}^{3 \mathrm{x}}+13 \mathrm{e}^{2 \mathrm{x}}-8 \mathrm{e}^{\mathrm{x}}+1=0, \mathrm{x} \in \mathbb{R}$ has:
[Jan. 31, 2023 (II)]
(a) Two solutions and both are negative
(b) No solution
(c) Four solutions two of which are negative
(d) Two solutions and only one of them is negative
210. If the value of real number $a>0$ for which $x^{2}-5 a x+1$ $=0$ and $x^{2}-a x-5=0$ have a common real roots is $\frac{3}{\sqrt{2 \beta}}$ then β is equal to \qquad -.
[NA, Jan. 30, 2023 (II)]
211. Let $\lambda \in R$ and let the equation E be $|x|^{2}-2|x|+\mid \lambda-3$ $\mid=0$. Then the largest element in the set $S=$ $\{x+1: x$ is an integer solution of $E\}$ is \qquad .
[NA, Jan. 24, 2023 (I)]
212. If for some $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{R}$, not all have same sign, one of the roots of the equation $\left(p^{2}+q^{2}\right) x^{2}-2 q(p+r) x+q^{2}+r^{2}=0$ is also a root of the equation $x^{2}+2 x-8=0$, then $\frac{q^{2}+r^{2}}{p^{2}}$ is equal to \qquad .
[NA July 26, 2022 (I)]
213. Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation $x^{2}-x+2 \lambda=0$, and α and γ are the roots of equation $3 x^{2}-10 x+27 \lambda=0$, then $\frac{\beta \gamma}{\lambda}$ is equal to \qquad -
[2020, NA, Aug. 26, 2021 (II)]
214. The integer ' k ', for which the inequality $x^{2}-2(3 k-1) x$ $+8 \mathrm{k}^{2}-7>0$ is valid for every x in R , is:
[Feb. 25, 2021 (I)]
(a) 2
(b) 3
(c) 4
(d) 0
215. Let $a, b \in \mathrm{R}, a \neq 0$ be such that the equation, $a x^{2}-2 b x+5=0$ has a repeated root α, which is also a root of the equation, $x^{2}-2 b x-10=0$. If β is the other root of this equation, then $\alpha^{2}+\beta^{2}$ is equal to :
[2009(S) Jan. 9, 2020 (II)]
(a) 25
(b) 26
(c) 28
(d) 24
216. If $5,5 \mathrm{r}, 5 \mathrm{r}^{2}$ are the lengths of the sides of a triangle, then r cannot be equal to:
[Jan. 10, 2019 (I)]
(a) $\frac{3}{4}$
(b) $\frac{5}{4}$
(c) $\frac{7}{4}$
(d) $\frac{3}{2}$
217. If $\lambda \in \mathrm{R}$ is such that the sum of the cubes of the roots of the equation, $x^{2}+(2-\lambda) x+(10-\lambda)=0$ is minimum, then the magnitude of the difference of the roots of this equation is
[Online April 15, 2018]
(a) 20
(b) $2 \sqrt{5}$
(c) $2 \sqrt{7}$
(d) $4 \sqrt{2}$
218. If $|z-3+2 i| \leq 4$ then the difference between the greatest value and the least value of $|z|$ is
[Online April 15, 2018]
(a) $\sqrt{13}$
(b) $2 \sqrt{13}$
(c) 8
(d) $4+\sqrt{13}$
219. If the equations $x^{2}+b x-1=0$ and $x^{2}+x+b=0$ have a common root different from -1 , then $|\mathfrak{b}|$ is equal to :
[Online April 9, 2016]
(a) 2
(b) 3
(c) $\sqrt{3}$
(d) $\sqrt{2}$

／MATHEMATICS

220．If non－zero real numbers b and c are such that $\min f(x)>\max g(x)$ ，where $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}(x \in R)$ ；then $\left|\frac{c}{b}\right|$ lies in the interval：
［Online April 19，2014］
（a）$\left(0, \frac{1}{2}\right)$
（b）$\left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$
（c）$\left[\frac{1}{\sqrt{2}}, \sqrt{2}\right]$
（d）$(\sqrt{2}, \infty)$

221．If equations $a x^{2}+b x+c=0(a, b, c \in R, a \neq 0)$ and $2 x^{2}+3 x+4=0$ have a common root，then $a: b: c$ equals：
［2013（s），Online April 9，2014］
（a） $1: 2: 3$
（b） $2: 3: 4$
（c） $4: 3: 2$
（d） $3: 2: 1$

222．The least integral value α of x such that $\frac{x-5}{x^{2}+5 x-14}>0$ ， satisfies ：
［Online April 23，2013］
（a）$\alpha^{2}+3 \alpha-4=0$
（b）$\alpha^{2}-5 \alpha+4=0$
（c）$\alpha^{2}-7 \alpha+6=0$
（d）$\alpha^{2}+5 \alpha-6=0$

223．The values of＇a＇for which one root of the equation $x^{2}-(a+1) x+a^{2}+a-8=0$ exceeds 2 and the other is lesser than 2 ，are given by：
［2006（S），Online April 9，2013］
（a） $3<a<10$
（b）$a \geq 10$
（c）$-2<a<3$
（d）$a \leq-2$

224．If $\left|z-\frac{4}{z}\right|=2$ ，then the maximum value of $|z|$ is equal to：
［2009］
（a）$\sqrt{5}+1$
（b） 2
（c） $2+\sqrt{2}$
（d）$\sqrt{3}+1$

225．If x is real，the maximum value of $\frac{3 x^{2}+9 x+17}{3 x^{2}+9 x+7}$ is
［2006］
（a）$\frac{1}{4}$
（b） 41
（c） 1
（d）$\frac{17}{7}$

226．If both the roots of the quadratic equation
$x^{2}-2 k x+k^{2}+k-5=0$ are less than 5 ，then k lies in the interval
（a）$(5,6]$
（b）$(6, \infty)$
（c）$(-\infty, 4)$
（d）$[4,5]$

		（6）	L0Z	（e）	t8I	（q）	I9I	（ t ）	8\＆I	（0）	SII	（p）	26	（q）	69	（e）	9t	（q）	£z
		（q）	902	（0）	88I	（q）	09I	（9¢）	LEI	（8）	†II	（q）	I6	（e）	89	（p）	st	（0I）	zz
		（b）	¢0Z	（q）	28I	（b）	6SI	（86）	9£I	（z）	EII	（o）	06	（乙）	49	（ t ）	tt	（0）	IZ
		（b）	t0Z	（q）	181	（8）	8SI	（8）	S¢I	（IS）	ZII	（q）	68	（0t）	99	（o）	Et	（ t ）	07
（0）	97τ	（b）	E0Z	（e）	08I	（0）	LSI	（z）	†¢I	（0）	III	（ t ）	88	（0）	¢9	（e）	てt	（9）	6I
（q）	¢zz	（9）	z0z	（0）	6 LI	（p）	9SI	（ ${ }^{\text {c }}$（	£ยI	（p）	0II	（ ${ }^{(2)}$	L8	（92）	t9	（q）	It	（I）	8I
（e）	เてz	（p）	102	（o）	8LI	（p）	S¢I	（e）	Z $£ 1$	（q）	60 I	（）	98	（p）	£9	（o）	0t	（9）	LI
（0）	とてZ	（p）	$00 Z$	（e）	LLI	（p）	tSI	（q）	İI	（9）	80I	（）	S8	（p）	29	（b）	6ε	（）	9I
（p）	zzz	（p）	661	（p）	9LI	（q）	ESI	（）	0¢I	（）	LOI	（）	t8	（ E$)$	19	（0）	8£	（p）	¢I
（q）	Izz	（q）	86I	（q）	SLI	（q）	2SI	（q）	62 I	（）	90I	（0IE）	\＆8	（9）	09	（e）	L£	（）	†I
（p）	$0 z z$	（9）	L6I	（q）	－$\angle 1$	（ ${ }^{\text {e }}$	ISI	（0）	82 I	（）	S0I	（ ¢）	28	（0）	6 S	（q）	9E	（）	EI
（0）	612	（q）	961	（q）	ELI	（ c$)$	0SI	（q）	LZI	（8）	t0I	（8t）	18	（p）	8 S	（e）	¢ ε	（）	ZI
（q）	8IZ	（）	S6I	（e）	ZLI	（p）	6tI	（9）	97 I	（8）	E0I	（8）	08	（q）	LS	（o）	† \mathcal{L}	（2）	II
（q）	LIZ	（b）	t6I	（q）	ILI	（q）	8tI	（91）	SてI	（8）	Z0I	（0）	6 L	（8）	9S	（p）	£ ε	（q）	0I
（0）	9IZ	（p）	E6I	（e）	0LI	（tZE）	L†I	（9I）	†てI	（9）	I0I	（8）	8L	（0）	SS	（e）	て£	（6）	6
（b）	SIZ	（q）	261	（p）	69I	（I）	9†I	（q）	£ZI	（8）	00I	（9）	LL	（q）	ts	（0）	İ	（snuog）	8
（q）	\dagger IZ	（p）	I6I	（p）	89I	（p）	stI	（p）	てZI	（8）	66	（£）	9L	（p）	£S	（q）	0ع	（）	L
（8I）	£IZ	（o）	06I	（q）	L9I	（ I ）	t†I	（¢t）	IZI	（p）	86	（9）	SL	（cz）	zs	（b）	62	（）	9
（टL乙）	ZIZ	（）	681	（o）	991	（8）	EtI	（）	02 I	（snuog）	L6	（p）	$t L$	（6）	IS	（ع）	87	（p）	S
（¢）	IIZ	（0）	88I	（p）	¢9I	（0）	て†I	（q）	6II	（8）	96	（¢）	εL	（ tI ）	0S	（）	LZ	（089L）	t
（EI）	017	（q）	L8I	（0）	t9I	（99）	ItI	snuog	8II	（e）	S6	（08）	ZL	（e）	$6 t$	（q）	97	（q）	\mathcal{E}
（e）	$60 z$	（b）	98I	（p）	\＆9I	（9）	0†I	（e）	LII	（p）	t6	（p）	IL	（E）	8t	（q）	¢て	（q）	$\boldsymbol{\tau}$
（b）	$80 z$	（p）	S81	（p）	29I	（q）	6\＆I	（b）	91I	（0）	E6	（z）	0 L	（e）	Lt	（q）	tz	（p）	I
Sスヨ\ पヨMSNV																			

