

2

CHAPTER AT A GLANCE

Complex Numbers

If a and b are two real numbers, then a number of the form z = a + ib such that $i^2 = -1$ or $i = \sqrt{-1}$ is called a complex number. Here a is the real part denoted by Re(z) & b is the imaginary part denoted by Im(z).

Suppose $z_1 = a + ib \& z_2 = c + id$, here $z_1 = z_2$ if a = c & b = d.

Algebra of Complex Numbers

- **I.** Addition: Let $z_1 = a + ib$, $z_2 = c + id$, then $z_1 + z_2 = (a + c) + i(b + d)$
- **II. Difference :** $z_1 z_2 = (a c) + i(b d)$
- **III. Multiplication :** Let $z_1 = a + ib$, $z_2 = c + id$, then $z_1z_2 = (ac bd) + i(ad + bc)$

Properties of Multiplication:

- (i) The product of any two complex numbers is a complex number.
- (ii) $z_1z_2 = z_2z_1$ (Commutative Law)
- (iii) $(z_1z_2)z_3 = z_1 (z_2z_3)$ (Associative law)
- (iv) There exists the complex number 1 + i0(denoted as 1), called the multiplicative identity such that z.1 = z, for every complex number z.
- (v) For every non-zero complex number z = a + ib $(a \ne 0, b \ne 0)$, we have the complex number $a^2 + b^2 + ia^2 + b^2$

(denoted by \overline{z} or z^{-1}), called the

multiplicative inverse of z such that z. $\frac{1}{z} = 1$.

(vi) $z_1 (z_2 + z_3) = z_1 z_2 + z_1 z_3$ (distributive law)

IV. Division : For two complex numbers $z_1 \& z_2$, the quotient is given as :

$$\frac{z_1}{z_2} = z_1 \frac{1}{z_2}$$
 (where $z_2 \neq 0$).

Power of i

$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, $i^6 = -1$, etc. In general,

$$i^{4k} = 1$$
, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$ where, k is any integer.

COMPLEX
NUMBERS
AND QUADRATIC
EQUATIONS

Identities

$$(z_1+z_2)^2 = z_1^2 + 2z_1z_2 + z_2^2$$

 $(z_1-z_2)^2 = z_1^2 - 2z_1z_2 + z_2^2$

$$(z_1 + z_2)^3 = z_1^3 + 3z_1^2z_2 + 3z_1z_2^2 + z_2^3$$

$$(z_1 - z_2)^3 = z_1^3 - 3z_1^2z_2 + 3z_1z_2^2 - z_2^3$$

$$z_1^2 - z_2^2 = (z_1 + z_2)(z_1 - z_2)$$

Modulus and Conjugate of a Complex Number

The modulus of z = x + iy, denoted by |z| is the non-negative real number $\sqrt{a^2 + b^2}$, i.e., $|z| = \sqrt{a^2 + b^2}$ The conjugate of z = x + iy, denoted by \overline{z} where $\overline{z} = x - iy$

Properties:

(i)
$$|z_1 z_2| = |z_1| |z_2|$$
 (ii) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, |z_2| \neq 0$

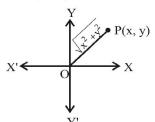
(iii)
$$z_1 z_2 = \overline{z}_1 \overline{z}_2$$

(iii)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$
 (iv) $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$

$$(v) \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}, \ z_2 \neq 0$$

Argand Plane

The complex number z = x + iy which corresponds to the ordered pair (x, y) can be represented geometrically as the unique point P(x, y) in the XY-plane. The plane having a complex number assigned to each of its point is called the argand plane or the complex plane.



x-axis is the real axis. y-axis is the imaginary axis.

Quadratic Equations

The solutions of the quadratic equation $ax^2 + bx + c = 0$, where a, b, c are real numbers, $a \neq 0$, $b^2 - 4ac < 0$ are given by

$$x = \frac{-b \pm \sqrt{4ac - b^2}i}{2a}$$

2a A polynomial equation of n degree has n roots. Relation between roots and coefficient

sum roots
$$(\alpha + \beta) = -\frac{b}{a}$$

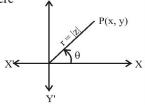
Product of roots $(\alpha \cdot \beta) = \frac{c}{}$

Polar Form of a Complex Number

The polar form of the complex number z = x + iy is $z = r (\cos \theta + i \sin \theta)$, where

$$r = \sqrt{x^2 + y^2} = |z|$$

$$\cos \theta = \frac{x}{r}, \sin \theta = \frac{y}{r}$$



 θ is termed as argument or amplitude of z denoted by arg z.

The value of θ , such that $-\pi < \theta \le \pi$ is called the principal argument of z.

Euler's Form of a Complex Number

$$\therefore e^{i\theta} = \cos\theta + i\sin\theta \therefore z = re^{i\theta}$$

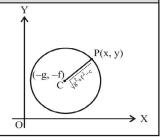
CHAPTER AT A GLANCE

General Equation of a Circle

The general equation of a circle is $x^2 + y^2 + 2gx + 2fy + c = 0$, where g, f, c are constants.

Centre of the circle is (-g, -f)

Radius of the circle is $\sqrt{g^2 + f^2 - c}$



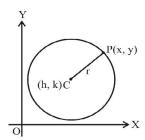
Circle

A circle is the set of all points in a plane that are equidistant from a fixed point in the plane.

The fixed point is called the centre of the circle and the distance from the centre to a point on the circle is called the radius of the circle.

Standard Equation of a Circle

The equation of a circle having centre (h, k) & radius r is $(x-h)^2 + (y-k)^2 = r^2$



Note that if (x_1, y_1) and (x_2, y_2) be the extremities of a diameter, then the equation of the circle is $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$.

3

6

CONIC SECTIONS

Position of a Point w.r.t Circle

- (i) If the distance of a point from the centre of the given circle is greater than the radius of the circle, then the point lies outside the circle.
- (ii) If this distance is less than the radius of the circle, then the point lies inside the circle.

,

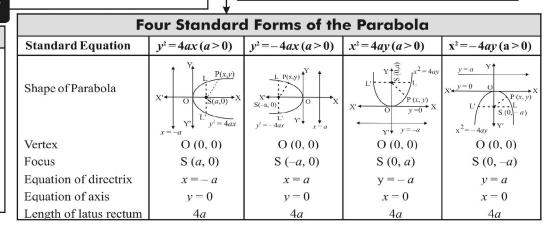
An ellipse is the set of all points in a plane, the sum of whose distances, form two fixed points in the plane is a constant.

Ellipse

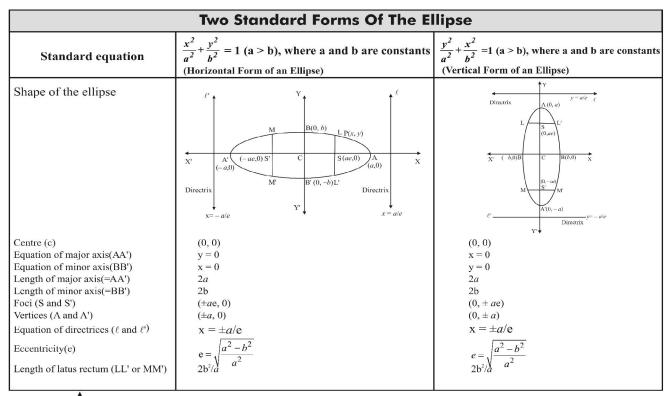
The two fixed points are called the 'foci' of the ellipse.

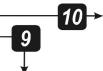
A parabola is a set of all points in a plane that are equidistant from a fixed line & a fixed point in a plane.

The fixed line is called the directrix of the parabola and the fixed point is called the focus.



CONIC SECTIONS 149





Hyperbola

A hyperbola is the set of all points in a plane, the difference of whose distances from two fixed points in the plane is a constant.

The two fixed points are called foci of the hyperbola.

Hyperbola and its Conjugate		
	Hyperbola	Conjugate Hyperbola
	$x = -\frac{a}{e} Y X = \frac{a}{e} (x_1, y_1)$ $Y Y Y X Y Y X X X X $	$X \leftarrow \begin{array}{c} X \\ Y \\$
Standard Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ or $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$
Centre	(0, 0)	(0, 0)
Eq. of transverse axis	y=0	x=0
Eq. of conjugate axis	x-0	y-0
Length of transverse axis	2a	2b
Length of conjugate axis	2b	2a
Foci	$(\pm ae, 0)$	$(0, \pm be)$
Equation of directrices	$y = \pm a/e$	$y = \pm b/e$
Vertices	(+a, 0)	(0, +b)
Eccentricity	$e = \sqrt{\frac{a^2 - b^2}{a^2}}$	$e = \sqrt{\frac{a^2 - b^2}{b^2}}$
Length of latus rectum	$2b^2/a$	$2a^2/b$

CHAPTER AT A GLANCE

Order of a Matrix

A matrix having m rows and n columns is called a matrix of order m×n or simply m×n matrix. or $A = [a_{ij}]_{m \times n}, 1 \le i \le m, 1 \le j \le n \ i, j \in N$

 a_{ij} is an element lying in the ith row & jth column. The number of elements in m×n matrix will be mn.

Types of Matrix

- (i) Column Matrix: A matrix is said to be a column matrix if it has only one column, i.e.,
 Λ = [a_{ii}]_{m×1} is a column matrix of order m×1.
- (ii) Row Matrix: Row matrix has only one row, i.e., $B = [b_{ii}]_{1 \times n}$ is a row matrix of order $1 \times n$.
- (iii) **Square Matrix**: Square matrix has equal number of rows and columns, i.e., $A = [a_{ij}]_{m \times m}$ is a square matrix of order m.
- (iv) **Diagonal Matrix :** A square matrix is said to be diagonal matrix if all of its non-diagonal elements are zero, i.e., $B = [b_{ij}]_{m \times n}$ is said to be a diagonal matrix if $b_{ij} = 0$, where $i \neq j$.
- (v) **Scalar Matrix**: It is a diagonal matrix with all its diagonal elements equal, i.e., $B = [b_{ij}]_{m \times n}$ is a scalar matrix if

$$b_{ij} = 0$$
, where $i \neq j$

$$b_{ij} = k$$
, when $i = j \& k = constant$.

(vi) **Identity Matrix**: It is a diagonal matrix having all its diagonal elements equal to 1, i.e., $A = [a_{ij}]_{m \times n}$ is an identity matrix if

$$a_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

we denoted identity matrix by I, when order is n.

(vii) **Zero Matrix**: A matrix is said to be zero or null matrix if all its elements are zero. It is denoted by O.

Equality of Matrices

Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are said to be equal if

- (i) they are of the same order
- (ii) each element of A is equal to the corresponding element of B, i.e., $a_{ii} = b_{ii}$ for all i & j

Multiplication of a Matrix by a Scalar

Let $A = [a_{ij}]_{m \times n}$ be a matrix & k be a number. Then, $kA = Ak = [ka_{ij}]_{m \times n}$

Properties

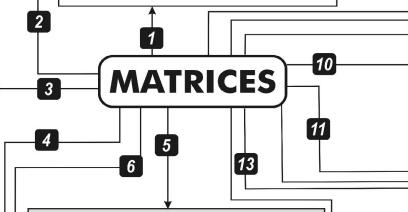
(I) k(A + B) = kA + kB (ii) (k + t) A = kA + tA.

Matrix

A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements of the matrix.

For example $\begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 & 6 \end{bmatrix}$ is a matrix.

The horizontal lines of elements in the above matrix are said to constitute, **rows** of the matrix & vertical lines of elements are said to constitute **columns** of the matrix. Thus above matrix has 2 rows and 3 columns.



Addition of Matrices

Sum of the two matrices is a matrix obtained by adding the corresponding elements of the given matrices, i.e., $A = [a_{ij}]$ and $B = [b_{ij}]$ are two matrices of same order m×n. Then sum of two matrices A & B is defined as $C = [c_{ij}]$, where $c_{ij} = a_{ij} + b_{ij}$ for all i & j. **Difference of matrices:** The difference A - B is defined as $D = [d_{ij}]$, where $d_{ij} = a_{ij} - b_{ij}$ for all i & j.

defined as $D = [d_{ij}]$, where $d_{ij} = a_{ij} - b_{ij}$ for all i & j. In order words D = A - B = A + (-B), that is the sum of matrices A & (-B).

Properties of matrix Addition

- (i) Commulative Law: A + B = B + A
- (ii) Associative Law: (A+B)+C=A+(B+C)
- (iii) Existance of Additive Identity: Let $A = [a_{ij}]_{m \times n}$ & $O = \text{zero matrix of order } m \times n$, then A + O = O + A = A. Here O is the additive identity for matrix addition.
- (iv) Existance of Additive Inverse

Let $\Lambda = [a_{ij}]_{m \times n}$ be any matrix then we have another matrix as $-A = [-a_{ij}]_{m \times n}$ such that A + (-A) = (-A) + A = O. Here -A is the additive inverse of A or negative of A.

Multiplication of Matrices

If A & B are any two matrices, then their product AB will be defined only when the number of columns in A is equal to the number of rows in B. If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$, then their product $AB = C = [c_{ij}]$, is a matrix of order $m \times p$, where $(ij)^{th}$ element of $AB = C_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$

Properties of Transpose of the Matrices

For any matrices A & B of suitable orders, we have:

- have: (i) $(A^T)^T = A$
- (ii) $(kA)^T = k(A)^T$ (where k is constant)
- (iii) $(A \pm B)^{T} = A^{T} \pm B^{T}$
- (iv) $(AB)^T = B^T A^T$

Invertible Matrix and Inverse Matrix

If A is a square matrix and there exists another square matrix B of the same order such that AB=BA=I, then B is called the inverse matrix of A & it is denoted by A^{-1} .

In that case A is said to be invertible matrix.

Properties of Invertible Matrices

- (i) Uniqueness of Inverse: Inverse of a square matrix, if it exists, is unique.
- $(ii) (AB)^{-1} = B^{-1}A^{-1}$

Inverse of a Matrix by Elementary Operations

If A is a matrix such that A^{-1} exists, then to find A^{-1} using elementary row operations, write A=IA & apply a sequence of row operations on A=IA till we get, I=BA. The matrix B will be the inverse of A. Similarly, if we wish to find A^{-1} using column operations, we write A=AI & apply a sequence of column operations on A=AI till we get, I=AB.

Properties of Matrix Multiplication

- (i) Associative Law for Multiplication: If A, B & C are three matrices of order m×n, n×p & p×q respectively, then (AB) C = A(BC)
- (ii) **Distributive Law:** For three matrices A, B & C (a) A(B+C) = AB + AC(b) (A+B) = AC + BC whenever both sides of
- (b) (Λ + B) C = ΛC + BC, whenever both sides of equality are defined.
 (iii) Matrix Multiplication is not commutative in general, i.e.,
- AB ≠ BA (in general).

 (iv) Existence of Multiplicative Identity: For every square materials.
- (iv) Existence of Multiplicative Identity: For every square matrix A, there exists an identity matrix I of same order such that IA = AI = A.

Transpose of a Matrix

The matrix obtained from a given matrix A by changing its rows into its corresponding columns or columns into its corresponding rows is called transpose of matrix A & it is denoted by A^T or A'. If the order of A is $m \times n$, then order of A^T is $n \times m$. In other words if $A = [a_{ii}]_{m \times n}$ then $A^T = [a_{ii}]_{n \times m}$

In other

Symmetric & Skew Symmetric Matrices

Symmetric Matrix

12

A square matrix $A = [a_{ij}]$ is called a symmetric matrix, if $a_{ij} = a_{ji}$ for all i, j or $A^T = A$

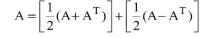
Skew Symmetric Matrix

9

A square matrix $A = [a_{ij}]$ is called a skew-symmetric matrix, if $a_{ij} = -a_{ji}$ for all i, j or $A^T = -A$.

Properties of Symmetric & Skew Symmetric Matrices

- (I) For any square matrix A with real number entries, $(A + A^T)$ is a symmetric matrix & $(A A^T)$ is a skew symmetric matrix.
- (ii) Any square matrix A can be expressed as the sum of a symmetric & a skew symmetric matrix as



Elementary Operation (Transformation of a Matrix)

There are six operations on a matrix, three of which are due to rows & three due to columns, called elementary operations or Transformations.

- (i) The interchange of any two rows or two columns symbolically, interchange of i^{th} & j^{th} rows is denoted by $R_i \leftrightarrow R_j$ & same will be for columns, i.e., $C_i \leftrightarrow C_j$.
- (ii) The multiplication of the elements of any row or column by a non zero number. For rows it is denoted as $R_i \leftrightarrow kR_i$, $k \ne 0$ & for columns: $C: \leftrightarrow kC$
- (iii)The addition to the elements of any row or column, the corresponding elements of any other row or column multiplied by any non-zero number. Symbolically, the addition to the elements of i^{th} row, the corresponding elements of j^{th} row multiplied by k is denoted as: $R_i \leftrightarrow R_i + kR_j (k \neq 0)$ For columns : $C_i \leftrightarrow C_i + kC_i$

CHAPTER AT A GLANCE

Increasing and Decreasing Functions

- (1) (I) Let I be an open interval contained in the domain of a real valued function f. Then f is said to be
 - (i) increasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) \le f(x_2) \forall x_1, x_2 \in I$.
 - (ii) strictly increasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) < f(x_2) \ \forall \ x_1, x_2 \in I$.
 - (iii) decreasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) \ge f(x_2) \ \forall \ x_1, x_2 \in I$.
 - (iv) strictly decreasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) > f(x_2) \forall x_1, x_2 \in I$.
 - (II) A function f is said to be increasing at x_0 if there exists an interval $I = (x_0 h, x_0 + h)$, h > 0 such that for x_1, x_2

$$x_1 < x_2 \text{ in } I \Rightarrow f(x_1) \le f(x_2)$$

Similarly, the other cases i.e., strictly increasing, decreasing and strictly decreasing can be clarified.

(2) A function f(x) defined in the interval [a,b] will be

Monotonic increasing \Leftrightarrow f'(x) \geq 0 $x \in (a, b)$

Monotonic decreasing \Leftrightarrow f'(x) \leq 0 x \in (a, b)

Constant function \Leftrightarrow f'(x)=0x \in (a, b)

Strictly increasing \Leftrightarrow f'(x)>0x \in (a, b)

Strictly decreasing \Leftrightarrow f'(x) \leq 0 $x \in (a, b)$

Properties of Monotonic Functions

- (1) If f (x) and g(x) are monotonically (strictly) increasing (decreasing) functions on [a, b], then gof (x) is a monotonically (strictly) increasing function on [a, b].
- (2) If one of the two functions f (x) and g(x) is strictly (monotonically) increasing and other is strictly (monotonically) decreasing, then gof (x) is strictly (monotonically) decreasing on [a, b].

Rate of Change of Quantities

The rate of change of y with respect to x at a point $x = x_0$ is given by $\left(\frac{dy}{dx}\right)_{x=x_0}$

Note that $\frac{dy}{dx}$ is positive if y increases with increase in x and is negative if y decreases with increase in x.

2

7_

Tangents and Normals

 The equation of the tangent at (x₀, y₀) is given below:

$$y - y_0 = m(x - x_0),$$

where m = slope of tangent = $\left(\frac{dy}{dx}\right)_{(x_0, y_0)}$ or

The equation of the normal at (x₀, y₀) is given below:

$$y-y_0 = -\frac{1}{m}(x-x_0),$$

where m = slope of tangent at (x_0, y_0)

Approximations

Let y = f(x), Δx be a small increment in x & Δy be the increment in y corresponding to the increment in x, i.e., $\Delta y = f(x + \Delta x) - f(x)$. Then approximate value of

$$\Delta y = \left(\frac{dy}{dx}\right) \Delta x$$

Maxima and Minima

- 1. Let f be a funciton defined on an interval I. Then
 - (a) f is said to have a maximum value in I. if there exists point c in I such that $f(c) \ge f(x)$, for all $x \in I$.
 - f(c) is the maximum value and point c is a point of maximum value of f in I.
 - (b) f is said to have a minimum value in I. if there exists a point c in I such that f(c) ≤ f(x), for all x ∈ I.
 - f(c) is the minimum value and point c is a point of minimum value of f in I.
 - (c) f is said to have an extreme value in I if there exists a point c in I such that f(c) is either a maximum value or a minimum value of f in I. f(c) is an extreme value and point c is called an extreme point.
- 2. Let f be a real valued function and let c be an interior point in the domain of f. Then
 - (a) c is called a point of local maxima if there is an h > 0 such that
 - $f(c) \ge f(x)$, for all x in (c-h, c+h)
 - The value f(c) is called the local maximum value of f.
 - (b) c is called a point of local minima if there is an h > 0 such that
 - $f(c) \le f(x)$, for all x in (c-h, c+h)

The value f(c) is called the local minimum value of f.

Let f be a function defined on an open interval
 I. Suppose c ∈ I be any point. If f has a local maxima or a local minima at x = c, then either f'(c) = 0 or f is not differentiable at c.

Test of Local Maxima & Minima

First Derivative Test:

Let f(x) be a function differentiable at x = a. Then

- (a) x = a is a point of local maximum of f(x), if
 - (i) f'(a) = 0 and
 - (ii) f'(x) changes sign from positive to negative as x increases through a
- **(b)** x = a is a point of local minimum of f(x), if
 - (i) f'(a) = 0 and
 - (ii) f'(x) changes sign from negative to positive as x increases through a
- (c) If f'(a) = 0, but f'(x) does not change sign as x increases through a, that is f'(a) has the same sign in the complete neighourhood of a, then a is neither a point of local maximum nor a point of local minimum. In this case, x = a is a point of inflection.

Second Derivative Test:

Let f be a function defined on an interval I and $c \in I.$ Let f be twice differentiable at c. Then

- (i) x = c is a point of local maxima if f'(c) = 0 and f"(c) < 0The value f(c) is local maximum value of f.
- (ii) x = c is a point of local minima if f'(c) = 0 and f''(c) > 0In this case, f(c) is local minimum value of f.
- (iii) The test fails if f'(c) = 0 and f''(c) = 0 In this case, we go back to the first derivative test and find whether c is a point of local maxima, local minima or a point of inflection.

Absolute Maxima & Absolute Minima

Let f be a continuous function on an interval I = [a, b]. Then f has the absolute maximum value and f attains it at least once in I. Also, f has the absolute minimum value and attains it at least once in I.

Let f be a differentiable function on a closed interval I and let c be any interior point of I. Then

- (i) f'(c) = 0 if f attains its absolute maximum value at c.
- (ii) f'(c) = 0 if f attains its absolute minimum value at c.

Steps for Finding Absolute Maxima and/or Absolute Minima

- (i) Find all critical points of f in the interval, i.e., find value of x where either f'(x) = 0 or f is not differentiable.
- (ii) Take the end points of the interval.

8

- (iii) At all the above points (in step (i) and (ii)) calculate the value of f.
- (iv) Identify the maximum and minimum values of fout of the values calculated in step (iii). The maximum value will be the absolute maximum value of f and the minimum value will be the absolute minimum value of f.

CHAPTER AT A GLANCE

Direction Ratios of a Line (DR's)

Any three numbers a, b and c proportional to the direction cosines l, m and n, respectively are called direction ratios of the line.

- The direction ratios of a line passing through two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are $(x_2 - x_1)$, $(y_2 - y_1)$, $(z_2 - z_1)$
- $l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \quad m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}} \quad \text{and} \quad n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$

Equation of a Line

1. Equation of a line through a given point with position vector \vec{a} and parallel to a given vector \vec{b} :

In vector form, $\vec{r} = \vec{a} + \lambda \vec{b}$

In cartesian form,

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

 $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ where, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $\vec{a} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$, $\vec{b} = a\hat{i} + b\hat{j} + c\hat{k}$ Here, a, b, c are also the direction ratios of the line.

2. Equation of a line passing through two given points with position vectors \vec{a} and \vec{b} :

In vector form, $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$

In cartesian form,

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1} \text{ where,} \quad \begin{aligned}
\vec{r} &= x \hat{i} + y \hat{j} + z \hat{k}, \\
\vec{a} &= x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k} \\
&\& \vec{b} = x_2 \hat{i} + y_2 \hat{j} + z_3 \hat{k}
\end{aligned}$$

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k},
\vec{a} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}
\& \vec{b} = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$$

Direction Cosines of a Line (DC's)

The direction cosines are generally denoted by l, m, n.

Hence, $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$ Note that $l^2 + m^2 + n^2 = 1$

THREE DIMENSIONAL **GEOMETRY**

Angle Between Two Lines

In vector form,

The angle between two lines

 $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1 \& \vec{r} = \vec{a}_2 + \mu \vec{b}_2$ is given as:

$$\cos \theta = \left| \frac{\vec{b}_1 \cdot \vec{b}_2}{|\vec{b}_1| |\vec{b}_2|} \right|$$

In cartesian form,

The angle between two lines:

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$
and
$$\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} \text{ is :}$$

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

 $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$

- If two lines are perpendicular, then $\vec{b}_1 \cdot \vec{b}_2 = 0$ or $\vec{a}_1 \vec{a}_2 + \vec{b}_1 \vec{b}_2 + \vec{c}_1 \vec{c}_2 = 0$
- If two lines are parallel, then $\vec{b}_1 = \lambda \vec{b}_2$ or $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

(5) Shortest Distance Between Two Lines

1. Distance Between Parallel Lines

The shortest distance between parallel lines $L_1 : \vec{r} = \vec{a}_1 + \lambda \vec{b}$ and $L_2 : \vec{r} = \vec{a}_2 + \mu \vec{b}$ is

$$d = \left| \frac{\vec{b} \times (\vec{a}_2 - \vec{a}_1)}{|\vec{b}|} \right|$$

2. Distance Between Two Skew Lines In vector form,

The distance between two skew lines

$$\vec{r} = \vec{a}_1 + \lambda \vec{b}_1 \& \vec{r} = \vec{a}_2 + \mu \vec{b}_2$$
 is given as:
$$d = \frac{|(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)|}{|\vec{b}_1 \times \vec{b}_2|}$$

The distance between two skew lines:

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$

$$x - x_2 \quad y - y_2 \quad z - z_1$$

$$d = \begin{bmatrix} a_2 & b_2 & c_2 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$$

Equation of a Plane in Normal Form

Vector Form

$$\vec{r} \cdot \hat{n} = d$$

Here $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ n is the unit vector along the

normal from origin to the d is perpendicular distance of

the plane from the origin. Cartesian Form

 $l\mathbf{x} + \mathbf{m}\mathbf{y} + \mathbf{n}\mathbf{z} = \mathbf{d}$

where l, m, n are the direction cosines of \hat{n} (unit vector along the normal from origin to the plane).

Equation of a Plane Perpendicular to a Given Vector and Passing Through a Given Point

Vector Form

Let a plane pass through a point with position vector \vec{a} and perpendicular to the vector \vec{N} . Then its equation is given as: $(\vec{r} - \vec{a}) \cdot \vec{N} = 0$

Cartesian Form

Let a plane pass through a point $(x_1, y_1 z_1)$ & the direction ratio of the vector perpendicular to the plane be A, B, C. Then its equation is given as:

$$A(x-x_1) + B(y-y_1) + C(z-z_1) = 0$$

Equation of a Plane Passing Through **Three Non-Collinear Points**

Vector Form

$$\begin{bmatrix} \vec{r} \ \vec{b} \ \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{r} \ \vec{a} \ \vec{b} \end{bmatrix} + \begin{bmatrix} \vec{r} \ \vec{c} \ \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$$
or $(\vec{r} - \vec{a}) \cdot [\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) = 0$

where, $\vec{a}, \vec{b}, \vec{c}$ are the position vector of three given noncollinear points through which the plane passes.

Cartesian Form

The equation of plane passing through three noncollinear points Y with coordinates (x_1, y_1, z_1) , $(x_2, y_2, z_2) & (x_3, y_3, z_3)$ is given as:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

Intercept **Form** of the Equation of a

Plane

 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ where a, b, c are the intercepts made by the plane on x, y & z axes respectively.

Plane Passing Through the Intersection of Two Given Planes

Vector Form

Equation of plane passing through the point of intersection of two planes $\vec{r} \cdot \vec{n}_1 = d_1$ and $\vec{r} \cdot \vec{n}_2 = d_2$ is given as:

$$\vec{r} \cdot (\vec{n}_1 + \lambda \vec{n}_2) = d_1 + \lambda d_2$$

Cartesian Form

Let

$$\vec{n}_1 = A_1 \hat{i} + B_1 \hat{j} + C_1 \hat{k}$$

 $\vec{n}_2 = A_2 \hat{i} + B_2 \hat{j} + C_2 \hat{k}$
and $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$,

therefore its cartesian equation is:

$$(A_1x + B_1y + C_1z - d_1) + \lambda(A_2x + B_2y + C_2z - d_2) = 0$$

Coplanarity of Two Lines

Vector Form

Two lines $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$

are coplanar, if $(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = 0$

Cartesian Form

Two lines
$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$

and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$

d
$$\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$$

e coplanar, if $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 \\ a_1 & b_2 \end{vmatrix}$

are coplanar, if

Angle Between a Line and a Plane

Vector Form

Angle between a line

 $\vec{r} = \vec{a} + \lambda \vec{b}$ and a plane $\vec{r} \cdot \vec{n} = d$ is

$$\cos \theta = \left| \frac{\vec{b} \cdot \vec{n}}{|\vec{b}| |\vec{n}|} \right|$$

Cartesian Form

Angle between a line $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and a plane $a_2x + b_2y + c_2z = d$ is given as:

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

• If line is perpendicular to the plane,

then
$$\vec{n} = \lambda \vec{b}$$
 or $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
• If line is parallel to the plane, then

 $\vec{n} \cdot \vec{b} = 0$ or $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$

Distance of a Point from a Plane

Vector Form

Distance of a point with position vector a from a plane $\vec{r} \cdot \vec{n} = d$ is given as:

$$\frac{\left|\vec{a}\cdot\vec{n}-d\right|}{\left|\vec{n}\right|}$$

Cartesian Form

Distance of a point (x_1, y_1, z_1) from a plane: ax + by + cz = d is given as:

$$\frac{|ax_1 + by_1 + cz_1 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

Angle Between Two Planes

Vector Form: The angle between two

$$\vec{\mathbf{r}} \cdot \vec{\mathbf{n}} = \mathbf{d}_1 & \vec{\mathbf{r}} \cdot \vec{\mathbf{n}} = \mathbf{d}_2 \text{ is given as:} \\
\cos \theta = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|}$$

Cartesian Form The angle between two planes $a_1x + b_1y + c_1z + d_1 = 0$

and
$$a_2x + b_2y + c_2z + d_2 = 0$$
 is given as
$$\cos \theta = \left| \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$

- If two planes are perpendicular, then $\vec{n}_1 \cdot \vec{n}_2 = 0$ or $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$
- If two planes are parallel, then

$$\vec{n}_1 = \lambda \vec{n}_2$$
 or $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$