CBSE 10

1 Sample Paper $|\mid$

Ch. No.	Chapter Name	5			\bigcirc	\square			
			Section-A (1 Mark)		Section-B (2 Marks)	Section-C (3 Marks)	Section-D (5 Marks)	Section-E (4 Marks)	Total
			MCQ	A/R	VSA	SA	LA	Case-Study	
1	Real Number	6	2(Q1,5)	1(Q19)		1(Q26)			6
2	Polynomials	20	1(Q4)			1(Q27)			4
3	Pair of Linear Equations in Two Variables		1(Q3)		1(Q21)	1(Q28)			6
4	Quadratic Equations		1(Q2)				1(Q34)		6
5	Arithmetic Progression							1(Q36)	4
6	Triangles	15	2(Q6,8)		1(Q22)		1(Q32)		9
7	Circles		1(Q13)		1(Q24)	1(Q30)			6
8	Coordinate Geometry	6	2(Q9,11)					1(Q38)	6
9	Introduction to Trigonometry	12	2(Q7,10)	1(Q20)	1(Q23)	1(Q29)			8
10	Some Applications of Trigonometry							1(Q37)	4
11	Areas Related to Circles	10	2(Q12,14)		1(Q25)				4
12	Surface Areas and Volumes		1(Q16)				1(Q33)		6
13	Statistics	11	2(Q15,17)				1(Q35)		7
14	Probability		1(Q18)			1(Q31)			4
Tota	I Marks (Total Questions)	80	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)
Note : The number given inside the bracket denotes question number, asked in the sample paper, while the number given outside the bracket are the number of questions from that particular chapter.									

Want to solve more such

 Sample Questions*?

ISBN
9789355648952

(Standard) 2024

Sample Papers with 2023
Previous Year Solved Papers
*This 2024 Sample
Question Paper is taken from Disha's new book Super 10 CBSE Class 10 Mathematics

Get this book at discounted price on

DISHA'
Publication Inc
amazon.in

https://amzn.to/41yN88j

Flipkart

https://bit.ly/486yx6|

General Instructions

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
6. Section E has 3 case based integrated units of assessment (4 marks each) with sub parts of values of 1, 1 and 2 marks each respectively.

SECTION-A (Multiple Choice Questions)

Each question carries 1 mark.

1. I. The L.C.M. of x and 18 is 36 .
II. The H.C.F. of x and 18 is 2 .

What is the number x ?
(a) 1
(b) 2
(c) 3
(d) 4
2. If the sum of the roots of a quadratic equation is 6 and their product is 6 , the equation is
(a) $x^{2}-6 x+6=0$
(b) $x^{2}+6 x-6=0$
(c) $x^{2}-6 x-6=0$
(d) $x^{2}+6 x+6=0$
3. For what values of k will the following pair of linear equations have infinitely many solutions?
$k x+3 y-(k-3)=0$
$12 x+k y-k=0$
(a) $k=4$
(b) $k=3$
(c) $k=6$
(d) $k=2$
4. If the zeroes of the polynomial $f(x)=k^{2} x^{2}-17 x+k+2,(k>0)$ are reciprocal of each other than value of k is
(a) 2
(b) -1
(c) -2
(d) 1
5. Given that L.C.M. $(91,26)=182$, then H.C.F. $(91,26)$ is
(a) 13
(b) 26
(c) 17
(d) 9
6. Two triangles are similar if
(a) their corresponding angles are equal.
(b) their corresponding sides are equal.
(c) both are right triangle.
(d) None of the above
7. If $\tan ^{2} \theta=1-a^{2}$, then the value of $\sec \theta+\tan ^{3} \theta \operatorname{cosec} \theta$ is
(a) $\left(2-a^{2}\right)$
(b) $\left(2-a^{2}\right)^{1 / 2}$
(c) $\left(2-a^{2}\right)^{2 / 3}$
(d) $\left(2-a^{2}\right)^{3 / 2}$
8. If in two $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q}$ and $\angle \mathrm{R}=\angle \mathrm{E}$, then which of the following is not true?
(a) $\frac{E F}{P R}=\frac{D F}{P Q}$
(b) $\frac{D E}{P Q}=\frac{E F}{R P}$
(c) $\frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}}$
(d) $\frac{\mathrm{EF}}{\mathrm{RP}}=\frac{\mathrm{DE}}{\mathrm{QR}}$
9. If $P=(2,5), Q=(x,-7)$ and $P Q=13$, what is the value of ' x '?
(a) 5
(b) 3
(c) -3
(d) -5
10. If $b \tan \theta=a$, the value of $\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}$ is
(a) $\frac{a-b}{a^{2}+b^{2}}$
(b) $\frac{a+b}{a^{2}+b^{2}}$
(c) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
(d) $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
11. In what ratio does the point $(-2,3)$ divide the line-segment joining the points $(-3,5)$ and $(4,-9)$?
(a) $2: 3$
(b) $1: 6$
(c) $6: 1$
(d) $2: 1$
12. The figure shows two concentric circleswith centre O and radii 3.5 m and 7 m . If $\angle B O A=40^{\circ}$, find the area of the shaded region.

(a) $\frac{77}{6} \mathrm{~cm}^{2}$
(b) $\frac{76}{5}$
(c) $\frac{73}{6}$
(d) None of these
13. In the figure below (not to scale), $\mathrm{AB}=\mathrm{CD}$ and $\overline{A B}$ and $\overline{C D}$ are produced to meet at the point p.

If $\angle \mathrm{BAC}=70^{\circ}$, then $\angle \mathrm{P}$ is
(a) 30°
(b) 40°
(c) 45°
(d) 50°
14. The area of a circular ring formed by two concentric circles whose radii are 5.7 cm and 4.3 cm respectively is
(Take $\pi=3.1416$)
(a) $43.98 \mathrm{sq} . \mathrm{cm}$
(b) 53.67 sq. cm
(c) $47.24 \mathrm{sq} . \mathrm{cm}$
(d) 38.54 sq.cm
15. The mean weight of a class of 35 students is 45 kg . If the weight of a teacher be included, the mean weight increases by 500 grams. Find the weight of the teacher.
(a) 63 kg
(b) 61 kg
(c) 64 kg
(d) 70 kg
16. Volume of a spherical shell is given by
(a) $4 \pi\left(R^{2}-r^{2}\right)$
(b) $\pi\left(R^{3}-r^{3}\right)$
(c) $4 \pi\left(R^{3}-r^{3}\right)$
(d) $\pi\left(R^{3}-r^{3}\right)$
17. In the following distribution

Monthly income range (in ₹)

Number of families

Income more than ₹ 10,000
100
Income more than ₹ 13,000
85
Income more than ₹ 16,000
69
Income more than ₹ 19,000
50
Income more than ₹ 22,000
33
Income more than ₹ 25,000
15
the number of families having income range (in ₹) $16000-19000$ is
(a) 15
(b) 16
(c) 17
(d) 19
18. For an event $\mathrm{E}, \mathrm{P}(\mathrm{E})+P(\bar{E})=\mathrm{q}$, then
(a) $0 \leq q<1$
(b) $0<q \leq 1$
(c) $0<q<1$
(d) None of these

(ASSERTION-REASON BASED QUESTIONS)

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
19. Assertion : $n^{2}-n$ is divisible by 2 for every positive integer.

Reason : $\sqrt{2}$ is not a rational number.
20. Assertion: In a right angled triangle, if $\tan \theta=\frac{3}{4}$, the greatest side of the triangle is 5 units.

Reason: $(\text { greatest side })^{2}=(\text { hypotenuse })^{2}=(\text { perpendicular })^{2}+(\text { base })^{2}$.

SECTION-B

This section comprises of very short answer type-questions (VSA) of 2 marks each.
21. Which type of equations $x+2 y=4$ and $2 x+y=5$ will be?

OR

For what value of k, the equations $3 x-y+8=0$ and $6 x-k y=-16$ represent coincident lines?
22. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of triangle PQR . Prove that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
23. Prove that $\frac{\tan ^{2} \theta}{\tan ^{2} \theta-1}+\frac{\operatorname{cosec}^{2} \theta}{\sec ^{2} \theta-\operatorname{cosec}^{2} \theta}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}$
24. A ball is in the rest position against a step $P Q$. If $P Q=10 \mathrm{~cm}$ and $Q R=15 \mathrm{~cm}$, then the diameter of the ball is \qquad

OR
In the diagram, PQ and QR are tangents to the circle centre O , at P and R respectively. Find the value of x .

FINAL HEUR

 FOR CLASS 10

Sample Papers on Latest Blueprint

25. In figure, two concentric circles with centre O, have radii 21 cm and 42 cm . If $\angle A O B=60^{\circ}$, find the area of the shaded region.
[Use $\pi=\frac{22}{7}$].

SECTION-C

This section comprises of short answer type questions (SA) of 3 marks each.
26. Prove that $\sqrt{2}+\sqrt{5}$ is irrational.
27. Quadratic polynomial $2 x^{2}-3 x+1$ has zeroes as α and β. Now form a quadratic polynomial whose zeroes are 3α and 3β.
28. Solve the following system of equations :

$$
\frac{4}{x}+5 y=7 ; \frac{3}{x}+4 y=5
$$

29. If $\tan (\mathrm{A}+\mathrm{B})=\sqrt{3}$ and $\tan (\mathrm{A}-\mathrm{B})=\frac{1}{\sqrt{3}} ; 0^{\circ}<\mathrm{A}+\mathrm{B} \leq 90^{\circ} ; \mathrm{A}>\mathrm{B}$, find A and B .
30. In fig. a circle touches the side $B C$ of $\triangle A B C$ at P and touches $A B$ and $A C$ produced at Q and R respectively. If $A Q=5 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{ABC}$.

OR
In the given figure, $\triangle A B C$ and $\triangle D B C$ are on the same base $B C . A D$ and $B C$ intersect at O. Prove that $\frac{A E}{D F}=\frac{A O}{D O}$.

31. In a single throw of a pair of different dice, what is the probability of getting (i) a prime number on each dice ? (ii) a total of 9 or 11 ?

OR

Three different coins are tossed together. Find the probability of getting (i) exactly two heads (ii) at least two heads (iii) at least two tails.

SECTION-D

This section comprises of long answer-type questions (LA) of 5 marks each.
32.

$\triangle P Q R$ is right angled at $Q . Q X \perp P R, X Y \perp R Q$ and $X Z \perp P Q$ are drawn. Prove that $X Z^{2}=P Z \times Z Q$.
33. A solid metallic right circular cone 20 cm high and whose vertical angle is 60°, is cut into two parts at the middle of its height by a plane parallel to its base. Find volume of small cone.

OR
From a solid cylinder of height 2.8 cm and diameter 4.2 cm , a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid. [Take $\pi=\frac{22}{7}$].
34. Roots of the quadratic equation $36 x^{2}-12 a x+\left(a^{2}-b^{2}\right)=0$ are $\frac{a+b}{c}$ and $\frac{a-b}{c}$. Then, find the value of c.
OR

Find the real roots of the equation $x^{2 / 3}+x^{1 / 3}-2=0 \square$
35. Find the median of the following data:

Height (in cm)	Less than 120	Less than 140	Less than 160	Less than 180	Less than 200
Number of students	12	26	34	40	50

SECTION-E

This section comprises of 3 case study/passage - based questions of 4 marks each with three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively.
36. Case - Study 1: Read the following passage and answer the questions given below.

India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in $6^{\text {th }}$ year and 22600 in $9^{\text {th }}$ year.

Based on the above information, answer the following questions:
(i) Find the production during first year.
(ii) Find the production during $8^{\text {th }}$ year.
(iii) Find the production during first 3 years.

OR

In which year, the production is Rs 29,200.
37. Case - Study 2: Read the following passage and answer the questions given below.

An electrician has to repair an electric fault on a pole of height 5 m . He needs to reach a point 1.3 m below the top of the pole to under take the repair work. He place the ladder of length 7.4 m at that position.

Then answer the following questions.
(i) Find measure of $\angle \mathrm{C}$.
(ii) Find measure of $\angle \mathrm{B}$.
(iii) Find distance between foot of ladder and pole.

OR

The value of $\sin ^{2} B+\sin ^{2} C$ is
38. Case - Study 3: Read the following passage and answer the questions given below.

A hockey field is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.
It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.
Each team plays with 11 players on the field during the game including the goalie.
Positions you might play include-

- Forward : As shown by players A, B, C and D.
- Midfielders: As shown by players E, F and G.
- Fullbacks: As shown by players H, I and J.

More than 80% of the Questions* in NEET were asked from these Books

(* - same or similar Questions)

st Book with 5 Unique Features

NCERT Locater

NCERT Theory + NEET PYQs in One Liner Format

Tips/ Tricks/ Techniques ONE-LINERS

New Pattern MCQs-2 \& 4/5 Statements, Matching \& AR

100\%
Solutions

4
NCERT based Topicwise MCQs

Skill Enhancer MCQs

Matching, Statement
\& A-R Type MCQs

Goalie: As shown by players H, I and J.
Using the picture of a hockey field below, answer the questions that follow:

(i) Find the coordinates of the centroid of $\triangle \mathrm{EHJ}$.
(ii) If a player P needs to be at equal distances from A and G , such that A, P and G are in straight line, then find the position of P .
(iii) Find the point on x axis equidistant from I and E.

OR
What are the coordinates of the position of a player Q such that his distance from K is twice his distance from E and K , Q and E are collinear?

SOLUTIONS

SAMPLE PAPER-1

1. (d) L.C.M \times H.C.F $=$ First number \times second number Hence, required number $=\frac{36 \times 2}{18}=4$.
2. (a) Required equation is $x^{2}-6 x+6=0$.
3. (c) Here, $\frac{a_{1}}{a_{2}}=\frac{k}{12}, \frac{b_{1}}{b_{2}}=\frac{3}{k}, \frac{c_{1}}{c_{2}}=\frac{k-3}{k}$

For a pair of linear equations to have infinitely many solutions:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
So, we have $\frac{k}{12}=\frac{3}{k}=\frac{k-3}{k}$ or $\frac{k}{12}=\frac{3}{k}$ which gives $k^{2}=36$ i.e., $k= \pm 6$

Also, $\frac{3}{k}=\frac{k-3}{k}$ gives $3 k=k^{2}-3 k$, i.e., $6 k=k^{2}$, which means $k=0$ or $k=6$.
Therefore, the value of k that satisfies both the conditions, is $k=6$. For this value, the pair of linear equations has infinitely many solutions.
4. (a) Since zeroes are reciprocal of each other, so product of the roots will be 1 , so
$k^{2}-k-2=0 \Rightarrow(k-2)(k+1)=0$
$k=2, k=-1$, Since $k>0 \therefore k=2$
5. (a) H.C.F. $(91,126)=\frac{91 \times 126}{\text { L.C.M. }(91,126)}$
$=\frac{91 \times 126}{182}=13$
6. (a) (By definition of similar triangles).
7. (d) $\sec \theta+\tan ^{3} \theta \operatorname{cosec} \theta$
$=\sec \theta+\frac{\sin \theta}{\cos \theta} \tan ^{2} \theta \operatorname{cosec} \theta=\sec \theta\left(1+\tan ^{2} \theta\right)$
$=\left(1+\tan ^{2} \theta\right)^{3 / 2}=\left[1+\left(1-a^{2}\right)\right]^{3 / 2}$
8. (b) Now, in $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$,
$\angle \mathrm{D}=\angle \mathrm{Q}, \angle \mathrm{R}=\angle \mathrm{E}$

$\therefore \quad \triangle \mathrm{DEF} \sim \Delta \mathrm{QRP}$
$\Rightarrow \quad \angle \mathrm{F}=\angle \mathrm{P}$
$\therefore \quad \frac{\mathrm{DF}}{\mathrm{QP}}=\frac{\mathrm{ED}}{\mathrm{RQ}}=\frac{\mathrm{FE}}{\mathrm{PR}}$
[by AAA similarity criterion]
[corresponding angles]
[corresponding sides]
9. (c) $\mathrm{PQ}=13 \Rightarrow \mathrm{PQ}^{2}=169$
$\Rightarrow \quad(\mathrm{x}-2)^{2}+(-7-5)^{2}=169$
$\Rightarrow \quad x^{2}-4 \mathrm{x}+4+144=169$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}-21=0 \Rightarrow \mathrm{x}^{2}-7 \mathrm{x}+3 \mathrm{x}-21=0$
$\Rightarrow(x-7)(x+3)=0 \Rightarrow x=7,-3$
10. (d) Given, $\tan \theta=\frac{a}{b}$
$\therefore \quad \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a \tan \theta-b}{a \tan \theta+b}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
11. (b) Suppose the required ratio is $\mathrm{m}_{1}: \mathrm{m}_{2}$ Then, using the section formula, we get

$$
\begin{aligned}
& -2=\frac{\mathrm{m}_{1}(4)+\mathrm{m}_{2}(-3)}{\mathrm{m}_{1}+\mathrm{m}_{2}} T \mathrm{M} \\
& \Rightarrow-2 \mathrm{~m}_{1}-2 \mathrm{~m}_{2}=4 \mathrm{~m}_{1}-3 \mathrm{~m}_{2} \\
& \Rightarrow m_{2}=6 m_{1} \Rightarrow m_{1}: m_{2}=1: 6
\end{aligned}
$$

12. (a) Area of the shaded region
$=\frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(7)^{2}-\frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(3.5)^{2}$
$=\frac{1}{9} \times \frac{22}{7} \times\left(7^{2}-3.5^{2}\right)=\frac{1}{9} \times \frac{22}{7} \times\left(49-\frac{49}{4}\right)$
$=\frac{1}{9} \times \frac{22}{7} \times \frac{49}{4} \times 3=\frac{77}{6} \mathrm{~cm}^{2}$
13. (b) Exterior angle of a cyclic quadrilateral is equal to its interior opposite angle.
$\angle \mathrm{BAC}=\angle \mathrm{DCA}$ and proceed.
14. (a) Let the radii of the outer and inner circles be r_{1} and r_{2} respectively; we have
Area $=\pi r_{1}^{2}-\pi r_{2}^{2}=\pi\left(\mathrm{r}_{1}^{2}-r_{2}^{2}\right)$
$=\pi\left(r_{1}-r_{2}\right)\left(r_{1}+r_{2}\right)$
$=\pi(5.7-4.3)(5.7+4.3)=\pi \times 1.4 \times 10 \mathrm{sq} . \mathrm{cm}$
$=3.1416 \times 14 \mathrm{sq} . \mathrm{cm} .=43.98 \mathrm{sq} . \mathrm{cms}$.
15. (a) Let the mean weight of a class of 35 students be \bar{x}_{1} and that of both students and a teacher be $\overline{\mathrm{x}}_{2}$

Then $\overline{\mathrm{x}}_{1}=45 \mathrm{~kg}$ and
$\overline{\mathrm{x}}_{2}=45+\frac{500}{1000}=45+0.5=45.5 \mathrm{~kg}$
$\overline{\mathrm{x}}_{1}=\frac{\Sigma \mathrm{x}_{1}}{\mathrm{n}_{1}}, \quad \overline{\mathrm{x}}_{2}=\frac{\Sigma \mathrm{x}_{2}}{\mathrm{n}_{1}}$
$\Rightarrow 45=\frac{\Sigma \mathrm{x}_{1}}{35}, \quad 45.5=\frac{\Sigma \mathrm{x}_{2}}{36}$
$\Rightarrow \quad \Sigma \mathrm{x}_{1}=1575 \mathrm{~kg}, \Sigma \mathrm{x}_{2}=1638 \mathrm{~kg}$
\Rightarrow Total weight $=$ weight of students + weight of teacher
$\therefore \quad$ Weight of teacher $=$ Total weight - weight of students
$\therefore \quad$ Weight of the teacher $=\Sigma \mathrm{x}_{2}-\Sigma \mathrm{x}_{1}$ $=1638-1575=63 \mathrm{~kg}$
16. (d) Volume of spherical shell
$=\frac{4}{3} \pi R^{3}-\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$
17. (d) Clearly, the number of families having income range (in ₹)
$16000-19000=69-50=19$.
18. (d) $\because P(E)+P(\bar{E})=1$
19. (b) Put $n=1$ and $n=2$.
20. (a) Both Assertion and Reason are correct and Reason is the correct explanation of the assertion.
greatest side $=\sqrt{(3)^{2}+(4)^{2}}=5$ units.
21. Comparing the given equations with $a_{1} x,+b_{1} y=c_{1}$ and $a_{2} x+b_{2} y=c_{2}$ we have
$\therefore \quad \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{2} ; \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{1} ; \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{4}{5}$
[1 Mark]
Here, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
[1/2Mark]
\therefore The equations have consistent and unique olution. [$1 / 2$ Mark]

OR

Pair of lines are coincident if
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
[1/2Mark]
Given lines,

$$
3 x-y+8=0
$$

and $6 x-k y+16=0$
Here, $a_{1}=3, b_{1}=-1, c_{1}=8$
$a_{2}=6, b_{2}=-k, c_{2}=16$
[$1 / 2$ Mark]
Using equation (i) we have

$$
\begin{aligned}
& \frac{3}{6}=\frac{-1}{-k}=\frac{8}{16} \\
\Rightarrow \quad & \frac{1}{\mathrm{k}}=\frac{1}{2} \\
\therefore \quad & \mathrm{k}=2
\end{aligned}
$$

[1/2Mark]
[1⁄2Mark]
22. Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, in which,

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}
$$

To Prove : $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
[1/2Mark]
Proof: $\frac{A B}{P Q}=\frac{B C}{Q R}$ (Given)

$\frac{2 B D}{2 Q M}=\frac{B C}{Q R} \therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
$\therefore \quad \triangle \mathrm{ABD} \sim \Delta \mathrm{PQM}(\mathrm{By} \mathrm{SSS})$
[1 Mark]
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{Q}$ (By corresponding angles of similar triangles)
Now, In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$ and $\angle \mathrm{B}=\angle \mathrm{Q}$
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}($ By SAS $)$
[1/2Mark]
23. LHS $=\frac{\tan ^{2} \theta}{\tan ^{2} \theta-1}+\frac{\operatorname{cosec}^{2} \theta}{\sec ^{2} \theta-\operatorname{cosec}^{2} \theta}$
$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-1}+\frac{\frac{1}{\sin ^{2} \theta}}{\frac{1}{\cos ^{2} \theta}-\frac{1}{\sin ^{2} \theta}}$
[1/2Mark]
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta} \times \frac{\sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta} \quad$ [1/2 Mark]
$=\frac{\sin ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}$
[$1 / 2$ Mark]
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}=$ RHS $\quad[1 / 2$ Mark]
24. In right $\Delta \mathrm{OSP}$,
$\mathrm{OP}^{2}=\mathrm{PS}^{2}+\mathrm{OS}^{2}$
[1 Mark]
$\Rightarrow \mathrm{r}^{2}=225+(\mathrm{r}-10)^{2}$
$\Rightarrow \mathrm{r}^{2}=225+\mathrm{r}^{2}-20 \mathrm{r}+100$
$\Rightarrow 20 \mathrm{r}=325$
$\Rightarrow 2 \mathrm{r}=32.5$
Hence, diameter $=32.5 \mathrm{~cm}$.

[1 Mark]
Answer : 32.5 cm
OR
$\angle \mathrm{POR}+\angle \mathrm{PQR}=180^{\circ}$
$\therefore \angle \mathrm{POR}=180^{\circ}-50^{\circ}=130^{\circ}$
$\angle \mathrm{PSR}=\frac{1}{2} \angle \mathrm{POR}$
[1/2Mark]

$\therefore \angle \mathrm{PSR}=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
[1⁄2 Mark]
$\Rightarrow \angle \mathrm{PSR}=\angle \mathrm{OSP}+\angle \mathrm{OSR}$
$\Rightarrow \angle \mathrm{PSR}=\angle \mathrm{OSP}+20^{\circ}$
$[\because \angle \mathrm{OSP}=\angle \mathrm{OSR}]$
$\Rightarrow 65^{\circ}=\angle \mathrm{OSP}=20^{\circ}$
$\Rightarrow \angle \mathrm{OSP}=45^{\circ}$
$\Rightarrow \angle \mathrm{OPX}=90^{\circ}$
$[\because \mathrm{PX}$ is a tangent $]$
$\Rightarrow \angle \mathrm{SPX}+\angle \mathrm{OPS}=90^{\circ}$
$\mathrm{x}^{\circ}+\angle \mathrm{OSP}=90^{\circ}$
$[\because \angle \mathrm{OPS}=\angle \mathrm{OSP}]$
$\mathrm{x}^{\circ}=90^{\circ}-45^{\circ}=45^{\circ}$
[1 Mark]
25.

Radius of inner circle, $\mathrm{r}=21 \mathrm{~cm}$
Radius of outer circle, $\mathrm{R}=42 \mathrm{~cm}$ Area of $(\mathrm{ABCD})=$ Area of sector (OAB)

- Area of sector (OCD)
$=\frac{60}{360} \times \pi\left(42^{2}-21^{2}\right)$
[1 Mark]
$=\frac{1}{6} \times \frac{22}{7} \times(42+21)(42-21)=\frac{1}{6} \times \frac{22}{7} \times 63 \times 21$
$=11 \times 21 \times 3=693 \mathrm{~cm}^{2}$
[1 Mark]
Area of shaded region $=$ Area of outer circle - Area of inner circle - Area (ABCD)
$=\pi(42)^{2}-\pi(21)^{2}-693=\frac{22}{7} \times 63 \times 21-693=4158-693$
$=3465 \mathrm{~cm}^{2}$
[1 Mark]

26. Let us assume on the contrary that $\sqrt{2}+\sqrt{5}$ is rational number. Then, there exist co-prime positive integers a and b such that

$$
\sqrt{2}+\sqrt{5}=\frac{a}{b} \Rightarrow \frac{a}{b}-\sqrt{2}=\sqrt{5}
$$

[$1 / 2$ Mark]

$$
\begin{gathered}
\Rightarrow \quad\left(\frac{a}{b}-\sqrt{2}\right)^{2}=(\sqrt{5})^{2} \text { [Squaring both sides] [1/2 Mark] } \\
\Rightarrow \quad(a-\sqrt{2 b})^{2}=5 b^{2} \Rightarrow a^{2}+2 b^{2}-2 a b \sqrt{2}=5 b^{2} \\
\quad[1 / 2 \text { Mark] } \\
\Rightarrow \quad a^{2}+2 b^{2}-3 b^{2}=2 a b \sqrt{2} \Rightarrow \frac{a^{2}-3 b^{2}}{2 a b}=\sqrt{2}
\end{gathered}
$$

[1/2 Mark]
$\Rightarrow \quad \sqrt{2}$ is a rational number

$$
\left[\because a, b \text { areintegers } \Rightarrow \frac{a^{2}-3 b^{2}}{2 a b} \text { is rational }\right][1 / 2 \text { Mark }]
$$

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is wrong.
Hence, $\sqrt{2}+\sqrt{5}$ is irrational.
[1/2Mark]
27. If α and β are the zeroes of $2 x^{2}-3 x+1$,
then $\alpha+\beta=\frac{-b}{a}=\frac{3}{2}$ and $\alpha \beta=\frac{c}{a}=\frac{1}{2}$
[1 Mark]
New quadratic polynomial whose zeroes are 3α and 3β is given by
$x^{2}-$ (Sum of the roots) $x+$ Product of the roots
$=x^{2}-(3 \alpha+3 \beta) x+3 \alpha \times 3 \beta$
[1 Mark]
$=x^{2}-3(\alpha+\beta) x+9 \alpha \beta=x^{2}-3\left(\frac{3}{2}\right) x+9\left(\frac{1}{2}\right)$
$=x^{2}-\frac{9}{2} x+\frac{9}{2}=\frac{1}{2}\left(2 x^{2}-9 x+9\right)$
[1 Mark]
Hence, required quadratic polynomial is $\frac{1}{2}\left(2 x^{2}-9 x+9\right)$.
28. $\frac{4}{x}+5 y=7$ and $\frac{3}{x}+4 y=5$
$\frac{4}{x}+5 y=7$
$\frac{3}{x}+4 y=5$
[1 Mark]
Multiply equation (i) by (3) and equation (ii) by (4) we get,

$$
\begin{equation*}
\frac{12}{x}+15 y=21 \tag{iii}
\end{equation*}
$$

$\frac{12}{x}+16 y=20$
Subtract (iii) and (iv), we get, $-\mathrm{y}=1 \Rightarrow \mathrm{y}=-1$ [1 Mark]
Now, putting the value of $y=-1$ in equation (i)
$\frac{4}{x}+5(-1)=7 \Rightarrow \frac{4}{x}=7+5 \Rightarrow \frac{4}{x}=\frac{12}{1} \Rightarrow 12 x$

JEE MAIN incomplete without these -3lockbusters

11820+	$2490+$ Numeric	126 Online Papers	18 Offline Papers
MCQs	Value Qns	$(2023-2012)$	$(2018-2002)$

- First Book to cover 18 Offline AIEEE/ JEE Main papers from 2002-2018 and 126 ONLINE JEE Main papers held from 2012-23.
- The books also include the AIEEE 2011 RESCHEDULED Paper
- The books are distributed into 29 (Physics), 31 (Chemistry) \& 28 (Maths) Chapters exactly following the chapter sequence of the NCERT books of class $11 \& 12$.
- The questions in each Chapter are further divided into 2-4 Topics. The Questions are immediately followed by their detailed solutions.
- The books constitute of 11820+ Most Important MCQs + 2490+ Numeric Value Questions with 100% Solutions.
$=4 \Rightarrow x=\frac{4}{12} \Rightarrow x=\frac{1}{3}$
[1 Mark]

Hence $x=\frac{1}{3}$ and $y=-1$
29. $\tan (\mathrm{A}+\mathrm{B})=\sqrt{3} \Rightarrow \tan (\mathrm{~A}+\mathrm{B})=\tan 60^{\circ}$
$(\because \tan 60=\sqrt{3})$
$\Rightarrow \mathrm{A}+\mathrm{B}=60^{\circ}$
$\tan (\mathrm{A}-\mathrm{B})=\frac{1}{\sqrt{3}} \Rightarrow \tan (\mathrm{~A}-\mathrm{B})=\tan 30^{\circ}$
[1 Mark]
$\left(\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right)$
$\Rightarrow \quad \mathrm{A}-\mathrm{B}=30^{\circ}$
Adding (i) and (ii), we get;
$2 \mathrm{~A}=90^{\circ} \Rightarrow \mathrm{A}=45^{\circ}$
Then from (i), $45^{\circ}+B=60^{\circ} \Rightarrow B=15^{\circ}$.
[1 Mark]
30. To Find: Perimeter of $\triangle A B C$

Let $\mathrm{AQ}=5 \mathrm{~cm}$ and
$A Q=A R$
$B \mathrm{Q}=\mathrm{BP}$
$\mathrm{CP}=\mathrm{CR}$
.....(iii)
(Tangent drawn from an external points are equal)

Since perimeter of $\triangle A B C=A B+B C+C A$
\Rightarrow Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BP}+\mathrm{PC}+\mathrm{CA}$
$[\because \mathrm{BC}=\mathrm{BP}+\mathrm{PC}] \quad[1 \mathrm{Mark}]$
$=(\mathrm{AB}+\mathrm{BQ})+(\mathrm{CR}+\mathrm{CA}) \quad$ from (ii) and (iii)
$=A Q+A R \quad[\because A Q=A R$ from (i) $]$
$=\mathrm{AQ}+\mathrm{AQ}=2 \mathrm{AQ}=2 \times 5=10 \mathrm{~cm} \quad[1 / 2$ Mark]
\therefore Perimeter of $\triangle \mathrm{ABC}=10 \mathrm{~cm}$.
OR
To prove: $\frac{\mathrm{AE}}{\mathrm{DF}}=\frac{A O}{D O}$
Construction : Draw $A E \perp B C$ and $D F \perp B C$.

[1 Mark]

Proof:

In $\triangle A O E$ and $\triangle D O F$,
$\angle A O E=\angle D O F \quad$ (Vertically opposite angles)
$\angle A E O=\angle D F O=90^{\circ} \quad$ (Construction)

$$
\begin{equation*}
\Rightarrow \quad \triangle A O E \sim \triangle D O F \quad(\text { By } A A \text { Similarity }) \quad[1 \text { Mark }] \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{A O}{D O}=\frac{A E}{D F}$
[1 Mark]
31. Total number of outcomes on throwing a pair of dice $=6 \times$ $6=36$
(i) Let E be the event of getting a prime number on each die.
So, favourable outcomes
$=\{(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,2)$, $(5,3),(5,5)\}$
Number of favourable outcomes $=9$
Then, $P(E)=\frac{9}{36}=\frac{1}{4}$
Therefore, the probability of getting a prime number on each dice is $\frac{1}{4}$.
[1 $1 / 2$ Marks]
(ii) Let F be the event of getting a total of 9 or 11 .

So, favourable outcomes
$=\{(3,6),(4,5),(5,4),(6,3),(5,6),(6,5)\}$.
Number of favourable outcomes $=6$
Thus, $\mathrm{P}(\mathrm{F})=\frac{6}{36}=\frac{1}{6}$
Hence, the probability of getting a total of 9 or 11 is $\frac{1}{6}$. [1 $1 / 2$ Marks]

OR

The possible outcomes of tossing three coins together :
$\{\mathrm{HHH}, \mathrm{HHT}, ~ H T H, ~ T H H, ~ H T T, ~ T H T, ~ T T H, ~ T T T ~\} ~$
\Rightarrow Total number of outcomes $=8$
(i) Outcomes of getting exactly two heads
$=\{$ HHT, HTH and THH $\}$
Favourable number of outcomes $=3$
Probability (getting exactly two heads) $=\frac{3}{8}$
[1 Mark]
(ii) Outcomes of getting at least two heads
$=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}$ and THH $\}$
Favourable number of outcomes $=4$
Probability (getting atleast two heads) $=\frac{4}{8}=\frac{1}{2}$
[1 Mark]
(iii) Outcomes of getting at least two tails
$=\{$ HTT, THT, TTH and TTT $\}$
Favourable number of outcomes $=4$
Probability (getting atleast two tails) $=\frac{4}{8}=\frac{1}{2}$
[1 Mark]
32.

$R Q \perp P Q, X Z \perp P Q$
$\Rightarrow X Z \| Y Q$
$\therefore X Y \| Z Q$
$X Y Q Z$ is a rectangle.
In $\triangle X Z Q, \angle 1+\angle 2=90^{\circ}$
In $\triangle P Z X, \angle 3+\angle 4=90^{\circ} \ldots$..(iii)
$X Q \perp P R \Rightarrow \angle 2+\angle 3=90^{\circ}$
From eqs. (i) and (iii)
$\angle 1=\angle 3$
[1 $1 / 2$ Marks]
[1 $1 / 2$ Marks]
From eqs. (ii) and (iii)
$\angle 2=\angle 4$
$\triangle P Z X \sim \triangle X Z Q$ ($A A$ similarity)
$\frac{P Z}{X Z}=\frac{X Z}{Z Q}$
$\Rightarrow \quad X Z^{2}=P Z \times Z Q$
[2 Marks]
33.

In $\Delta \mathrm{VO}^{\prime} \mathrm{A}$ and $\Delta \mathrm{VOC}$
[1 Mârk]
$\tan 30^{\circ}=\frac{\mathrm{OC}}{\mathrm{VO}}$ and $\tan 30^{\circ}=\frac{\mathrm{O}^{\prime} \mathrm{V}}{\mathrm{VO}^{\prime}}$
$\frac{1}{\sqrt{3}}=\frac{r_{1}}{20}$ and $\frac{1}{\sqrt{3}}=\frac{r_{2}}{10}$
$\mathrm{r}_{1}=\frac{20}{\sqrt{3}}$ and $\mathrm{r}_{2}=\frac{10}{\sqrt{3}}$
[2 Marks]
Volume of small cone
$=\pi r_{1} \mathrm{~h}=\frac{22}{7} \times \frac{10}{\sqrt{3}} \times 10$
$=\frac{2200}{7 \sqrt{3}}$
[2 Marks]

OR

Height of cylinder $=2.8 \mathrm{~cm}=\frac{14}{5} \mathrm{~cm}$
Radius of cylinder $=2.1 \mathrm{~cm}=\frac{21}{10} \mathrm{~cm}$
$l=\sqrt{(2.8)^{2}+(2.1)^{2}}=3.5 \mathrm{~cm}$
[2 Marks]

According to question a conical cavity of same height and diameter is hollowed out.
Now, T.S.A of remaining solid $=$ C.S.A of cone + C.S.A of cylinder + Area of base of cylinder
$=2 \pi r l+2 \pi r h+\pi r^{2}$
[1 Mark]
$=\pi \mathrm{r}[l+2 \mathrm{~h}+\mathrm{r}]$
$=\frac{22}{7} \times \frac{21}{10}\left[\frac{7}{2}+\frac{28}{5}+\frac{21}{10}\right]=\frac{22}{10} \times 3\left[\frac{35+56+21}{10}\right]$
$=\frac{22}{10} \times 3 \times \frac{112}{10}=73.92 \mathrm{~cm}^{2}$
[2 Marks]
34. Given equation is $36 x^{2}-12 a x+\left(a^{2}-b^{2}\right)=0$
$D=(-12 a)^{2}-4(36)\left(a^{2}-b^{2}\right) \quad\left[\because D=\mathrm{b}^{2}-4 \mathrm{ac}\right][1$ Mark]
$=144 a^{2}-144\left(a^{2}-b^{2}\right)=144 b^{2}$
[1 Mark]
Now, $=\frac{12 a \pm 12 b}{72}=\frac{a \pm b}{6}$
[2 Marks]
Hence, $c=6$
[1 Mark]
OR
The given equation is $x^{2 / 3}+x^{1 / 3}-2=0$
Put $x^{1 / 3}=y$, then $y^{2}+y-2=0$
$\Rightarrow y^{2}+2 \mathrm{y}-\mathrm{y}-2=0$
[1 Mark]
$\Rightarrow \mathrm{y}(\mathrm{y}+2)-1(\mathrm{y}+2)=0 \quad \Rightarrow(\mathrm{y}-1)(\mathrm{y}+2)=0$
$\Rightarrow y=1$ or $y=-2$
[1 Mark]
$\Rightarrow x^{1 / 3}=1 \quad$ or $x^{1 / 3}=-2$
[1 Mark]
$\therefore x=(1)^{3}$ or $x=(-2)^{3}=-8$
[1 Mark]
Hence, the real roots of the given equations are $1,-8$.
[1 Mark]
35.

Height	Frequency	c.f.
$100-120$	12	12
$120-140$	14	26
$140-160$	8	34
$160-180$	6	40
$180-200$	10	50
Total	$\mathbf{5 0}$	

[1 Mark]
Here, $\quad N=50 \Rightarrow \frac{N}{2}=\frac{50}{2}=25$
[1 Mark]
So, Median Class $=120-140$
Here, $\quad l=120, h=20, c . f .=12, f=14$
[1 Mark]
Median $=l+\left(\frac{\frac{N}{2}-c . f .}{f}\right) \times h=120+\left(\frac{25-12}{14}\right) \times 20$

$$
=120+\frac{260}{14}=120+18.57
$$

Median $=138.57$
[2 Marks]
36. (i) Given that
$a_{6}=a+5 d=16000$
$\frac{-\quad-}{-3 \mathrm{~d}=-6600 \Rightarrow \mathrm{~d}=2200}$
$\Rightarrow \quad \mathrm{a}=5000$
$\therefore \quad$ Production during first year $=5000$
[1 Mark]
(i) Production during $8^{\text {th }}$ year is $(\mathrm{a}+7 \mathrm{~d})$
$=5000+2(2200)=20400$
[1 Mark]
(ii) Production during first 3 year
$=5000+7200+9400=21600$
[2 Marks]
OR
$5000+(\mathrm{n}-1) 2200=29200 \Rightarrow \mathrm{n}=12^{\text {th }}$ year
Marks]
37. $\mathrm{BD}=5-1.3=3.7 \mathrm{~m}$
(i) $\sin \mathrm{C}=\frac{\mathrm{BD}}{\mathrm{BC}}=\frac{3.7}{7.4}=\frac{1}{2}$
$\Rightarrow \quad \sin \mathrm{C}=\sin 30^{\circ} \angle \angle \mathrm{C}=30^{\circ}$
[1 Mark]
(ii) $\angle \mathrm{D}+\mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+\angle \mathrm{B}+30^{\circ}=180^{\circ}$

$$
\angle \mathrm{B}=60^{\circ}
$$

[1 Mark]
(iii) $\tan 30^{\circ}=\frac{\mathrm{BD}}{\mathrm{CD}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{3.7}{\mathrm{CD}}$
$\Rightarrow \mathrm{CD}=3.7 \sqrt{3} \mathrm{~m}$
[2 Marks]
$\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}=\sin ^{2} 60^{\circ}+\sin ^{2} 30^{\circ}$
$=\frac{3}{4}+\frac{1}{4}=1$
[2 Marks]
38. (i) Centroid of $\triangle \mathrm{EHJ}$ with $\mathrm{E}(2,1), \mathrm{H}(-2,4) \& \mathrm{~J}(-2,-2)$ is Coordinates of centroid are
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
$\left(\frac{2+(-2)+(-2)}{3}, \frac{1+4+(-2)}{3}\right)=\left(\frac{-2}{3}, 1\right)$
[1 Mark]
(ii) If P needs to be at equal distance from $\mathrm{A}(3,6)$ and $G(1,-3)$, such that A, P and G are collinear, then P will be the mid-point of AG.
So coordinates of P will be $\left(\frac{3+1}{2}, \frac{6+(-3)}{2}\right)=\left(2, \frac{3}{2}\right)$
[1 Mark]
(iii) Let the point on x -axis equidistant from $\mathrm{I}(-1,1)$ and
$E(2,1)$ be $(x, 0)$ then $\sqrt{(x+1)^{2}+(0-1)^{2}}$
$=\sqrt{(x-2)^{2}+(0-1)^{2}}$
$\mathrm{x}^{2}+1+2 \mathrm{x}+1=\mathrm{x}^{2}+4-4 \mathrm{x}+1$
$6 \mathrm{x}=3$
So $\mathrm{x}=\frac{1}{2}$
$\therefore \quad$ the required point is $\left(\frac{1}{2}, 0\right)$
[2 Marks]

OR

Let the coordinates of the position of a player Q such that his distance from $K(-4,1)$ is twice his distance from $E(2,1)$ be $Q(x, y)$
Then KQ: QE $=2: 1$
$\mathrm{Q}(\mathrm{x}, \mathrm{y})=\left(\frac{2 \times 2+1 \times(-4)}{3}, \frac{2 \times 1+1 \times 1}{3}\right)=(0,1)[2$ Marks]

Order books using Disha App \& Get additional 5\% OFF!

(Offer Valid only when your order books from Disha App)

Download the APP NOW!

