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Angles

¨ An angle is a measure of rotation of a given ray about its initial point. Here
OA is initial position and OB is the final position of the given ray.

O A

B

¨ The original ray is called the initial side and the final position of the ray after
rotation is called the terminal side of the angle.

¨ The point of rotation is called the vertex.
¨ If the direction of rotation is anticlockwise, the angle is said to be positive

and if the direction of rotation is clockwise, then the angle is negative.

O
Terminal side

Initial side
O

(i) Positive angle (ii) Negative angle 
Initial side
Terminal side

Angle Measurement
A. Degree measure
¨ If a rotation from the initial side to terminal side is (1/360)th of a revolution,

the angle is said to have a measure of one degree, written as 1°.
¨ A degree is divided into 60 minutes, written as 1¢, i.e. 1° = 60¢.
¨ A minute is divided into 60 seconds, written as 1¢, i.e. 1¢ = 60¢¢.

B. Radian measure
¨ Angle subtended at the centre by an arc of length 1 unit in a unit circle (circle

of radius 1 unit) is said to have a measure of 1 radian.
¨ The figures show the angles whose measures are 1 radian, –1 radian

Trigonometric
Functions

3
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O

l

B

A

l

l
O l B

A

ll

1 radius
–1 radius

(i) (ii)

¨ One complete revolution of the initial side subtends an angle of 2p radian.
¨ A circle of radius r, an arc of length r subtends an angle whose measure is

l  radian, an arc of length l will subtend an angle q radian whose measure is

q = l  / r radian, or 
ArcAngle =

Radius
C. Relation between radian and real numbers
¨ From the figure. If we rope the line AP along the circle in the anticlock wise

direction, we find
¨ Every real number will correspond to a radian measure and conversely. Thus,

radian measures and real numbers can be considered as one and the same.

O

1
A

Q P
–2 –1 1 2

D. Relation between degree and radian
¨ A circle subtends at the centre an angle whose radian measure is 2p and its

degree measure is 360°.
         Hence,    2p radian = 360° or  p radian = 180°
¨ Using approximate value of p as 22/7, we have

1 radian = 180/ p ° = 57° 16¢ approximately. Also 1° = p /180 radian = 0.01746
radian approximately.
The relation between degree measures and radian measure of some common
angles are-

Degree 30 45 60 90 180 270 360
3Radian 2

6 4 3 2 6

° ° ° ° ° ° °
p p p p pp p

E. Notational Convention
¨ In this convention, we generally omit the word ‘radian’, when we expressed

an angle in radians.
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e.g. 45° = ,
4
p

 180° = p

Note: Radian measure = 180
p

 × Degree measure

Degree measure = 
180

p
× Radian measure

Trigonometric  Functions

¨ The extension of the definition of trigonometric ratios to any angle in terms
of radian measure is studied as trigonometric functions.

Y

Y'

XX'
x

D(0, –1)

(–1, 0)

(0,  1) B P  ( , )a b

(1, 0)
AMaO

1
b

x
C

¨ Let unit circle, Here we define cos x = a and sin x = b. Since DOMP is a right
triangle, we have OM2 + MP2 = OP2 or a2 + b2 = 1

¨ Thus, for every point on the unit circle,
we have a2 + b2 = 1 or cos2 x + sin2 x = 1
Since, one complet  revolution subtends an angle of 2p radian at the centre
of the circle, DAOB = p/2,

¨ All angles which are integral multiples of p/2 are called quadrantal angles.
¨ For quadrantal angles we have

cos 0° = 1, sin 0° = 0

cos 2
p

 = 0, sin 2
p

 = 1

cos 
3
2
p

 = 0 sin 
3
2
p

 = –1

¨ Thus,
sin x = 0 implies x = np, where n is any integer
cos x = 0 implies x = (2n + 1) p/2, where n is any integer.
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Let us see the table:

30 2
6 4 3 2 2
1 1 3sin 0 1 0 1 0
2 22
3 1 1cos 1 0 –1 0 1

2 22
not not1tan 0 1 3 0 0

defined defined3

p p p p p
° p p

-

¨ Basic Formulae

•
1sin , n

cosec
q = q ¹ p

q

•
1cos , (2n 1) .

sec 2
p

q = q ¹ +
q

•
1 ntan ,

cot 2
p

q = q ¹
q

•
sintan , (2n 1) .
cos 2

q p
q = q ¹ +

q

•
coscot , n .
sin

q
q = q ¹ p

q
A. Sign of trigonometric functions
¨ In different quadrants from the values of sin x, cos x we can find the signs of

other trigonometric functions as:

sin – –
cos – –
tan – –

cosce x – –
sec – –
cot – –

+ +
+ +
+ +
+ +
+ +
+ +

x

x
x

x
x

I II III IV

¨ Sign of Trigonometric Functions
II

sin, cosec are
positive, 

rest are negative

I

All positive

tan, cot are
positive,

rest are negative
III

cos, sec are
positive,

rest are negative
IV

Note: ASTC Remember  (After School to College)
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B. Domain and range of trigonometric functions
¨ By the definition of sine and cosine functions, we observe that they are

defined for all real numbers.
¨ Thus, domain of y = sin x and y = cos x is the set of all real numbers and range

is the interval [–1, 1], i.e., – 1 £ y £ 1.
¨ Since cosec x = 1/ sin x , the domain of y = cosec x is the set { x : x Î R and

x ¹ n p, n Î Z} and range is the set {y : y Î R, y ³ 1 or y £ – 1}.
¨ The domain of y = sec x is the set {x : x Î R and x ¹ (2n + 1) p/2, n Î Z} and

range is the set {y : y Î R, y £ – 1or y ³ 1}.
¨ The domain of y = tan x is the set {x : x Î R and x ¹ (2n + 1) p/2, n Î Z} and

range is the set of all real numbers.
¨ The domain of y = cot x is the set {x : x Î R and x ¹ n p, n Î Z} and the range

is the set of all real numbers.
¨ Let us discuss the behaviour of other trigonometric functions through the

following table as below

Domain and Range of Trigonometric Functions

Function Domain Range
sin x R [–1, 1]
cos x R [–1, 1]
tan x R– {(2n + 1)p/2, n Î Z} R
cosec x R – {np, nÎ Z} (–¥, –1] È [1, ¥)
sec x R – {(2n + 1)p/2, n Î Z} (–¥, –1] È [1, ¥)
cot x R – {np, n Î Z} R

increases from decreases from decreases from increases from
sin

0 to 1 1 to 0 0 to –1 –1 to 0
decreases from decreases from increases from increases from

cos
1 to 0 0 to –1 –1 to 0 0 to 1
increases fr

tan

I quadrant II quadrant III quadrant IV quadrant

om increases from increases from increases from
0 to – to 0 0 to – to 0
decreases from decreases from decreases from decreases from

cot
to 0 0 to – to 0 0 to –

increases from increases from decreases from decreases f
sec

1 to – to –1 –1 to –

¥ ¥ ¥ ¥

¥ ¥ ¥ ¥

¥ ¥ ¥
rom

to 1
decreases from increases from increases from decreases from

cosec
to 1 1 to – to –1 –1 to –

¥

¥ ¥ ¥ ¥
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¨ Let us see graphs of the trigonometric functions-

–1
–2

X' X

Y'
y = sec x

0

1
2

Y

–1
–2

X' X

Y'
y = cosec x

0

Y

2
1

Trigonometric Functions of Sum and
Difference of Two Angles

¨ sin (– x) = – sin x
¨ cos (– x) = cos x
¨ cos (x + y) = cos x cos y – sin x sin y
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¨ cos (x – y) = cos x cos y + sin x sin y
¨ cos (p/2 – x ) = sin x
¨ sin (p/2 – x ) = cos x
¨ sin (x + y) = sin x cos y + cos x sin y
¨ sin (x – y) = sin x cos y – cos x sin y
¨ cos (p/2 +x )  = – sin x
¨ sin (p/2 +x )  = cos x
¨ cos (p – x) = – cos x
¨ sin (p – x) = sin x
¨ cos (p + x) = – cos x
¨ sin (p + x) = – sin x
¨ cos (2p – x) = cos x
¨ sin (2p – x) = – sin x

¨ tan (x + y) = 
tan x tan y

1 – tan x tan y
+

¨ tan (x – y) = 
tan – tan

1 tan tan
x y

x y+

¨ cot (x + y) = 
cot x cot y –1
cot y + cot x

¨ cot (x – y) = 
cot x cot y 1
cot y – cot x

+

¨ cos 2x = cos2 x – sin2 x = 2 cos2 x – 1 = 1 – 2 sin2x

= 
2

2
1 – tan x
1 tan x+

¨ sin 2x = 2 sin x cos x = 2
2tan x

1 tan x+
 x ¹ n p + ,

2
p

 where n is an integer

¨ tan 2x = 2
2tan x

1 – tan x
 if 2x ¹ n p + ,

2
p

where n is an integer

¨ tan 3x = 
3

2
3tan x – tan x

1 – 3tan x
 if 3x ¹ n p + ,

2
p

 where n is an integer

¨ sin 3x = 3 sin x – 4 sin3x
¨ cos 3x = 4 cos3x – 3 cos x

¨ cos x + cos y = 2cos 
x y x – ycos

2 2
+
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¨ cos x – cos y = – 
x y x – y2sin sin

2 2
+

¨ sin x + sin y = 2sin 
x y x – ycos

2 2
+

¨ sin x – sin y = 2cos 
x y x – ysin

2 2
+

¨ 2 cos x cos y = cos (x + y) + cos (x – y)
¨ –2 sin x sin y = cos (x + y) – cos (x – y)
¨ 2 sin x cos y = sin (x + y) + sin (x – y)
¨ 2 cos x sin y = sin (x + y) – sin (x – y).

Trigonometric Equations

¨ Equations involving trigonometric functions of a variable are called
trigonometric equations.

¨ The solutions of a trigonometric equation for which 0 £ x  <  2p are called
principal solutions.

¨ The expression involving integer 'n' which gives all solutions of a
trigonometric equation is called the general solution.

Principal Solutions
¨ The solutions of a trigonometric equation in the variable 'x' for which 0 £ x < 2 p

are called principal solutions. E.g., the principal solution of equation

sin x = 
1
2  are x = 

5, .
6 6
p p

General Solutions
¨ sin x = 0 Þ x = np, n Î Z
¨ cos x = 0 Þ x = (2n + 1)p/2, n Î Z
¨ tan x = 0 Þ x = np, n Î Z
¨ sin x = sin y Þ x = np + (–1)n y, n Î Z
¨ cos x = cos y Þ x = 2np ± y, n Î Z
¨ tan x = tan y Þ x = np + y, n Î Z

Simple Applications of Sine and Cosine Formulae

¨ Sine Formulae: In any triangle, sides are proportional to the sines of the
opposite angles, that is, in a triangle ABC.
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sin A sin B sin C= =
a b c

B

A

C
¨ Cosine Formulae: Let A, B and C be angles of a triangles and a, b and c be

lengths of sides opposite to angles A, B and C respectively, then
• a2 = b2 + c2 – 2bc cos A
• b2 = c2 + a2 – 2ca cos B
• c2 = a2 + b2 – 2ab cos C

Past Years ONE-LINERS
JEE Main/Board 

¨ 1 + cos q = 2 cos2q/2
1 – cos q = 2 sin2q/2

¨ sin 2q = 2sinq.cosq

¨ tan tan 2tan ( 2 )
1 – tan tan 2

a + b
a + b =

a b

¨ Using A.M. and G. M. to find minimum or maximum value of Trigonomatric
expressions where sin(x) > 0, cos (x) > 0. tan(x) > 0 etc. where A. M. ³ G.M.

¨ To find number of solutions of trigonometric equations try to make dissimilar
trigo function as similar, ie., Let
Þ sin x = cos 2x Þ sin(x) – cos(2x) = 0
Þ sin(x) – [1 – 2 sin2(x)] = 0
Þ 2 sin2(x) + sin(x) – 1 = 0

¨ To find maximum value and minimum value of trigonometric expression (used
concept)
–1 £ sin x £ 1 Þ  0 £ sin2 x £ 1
–1 £ cos x £ 1 Þ  0 £ cos2 x £ 1

¨ Used concept

cos (C) + cos (D) = 2 cos C + D
2

æ ö
ç ÷
è ø

 cos C – D
2

æ ö
ç ÷
è ø
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Tips/Tricks/Techniques ONE-LINERS
(Exam Special)

4 Periodic properties of trigonometric functions
(a) sin x, cos x, sec x and cosec x are periodic functions with fundamental

period 2p.
(b) tan x and cot  x are periodic functions with fundamental period p.
(c) |sin x|, |cos x|, |tan x|,  |cot x|, |sec x|, |cosec x| are periodic functions with

fundamental period p.
(d) sinnx, cosnx, secnx, cosecnx are periodic functions with fundamental

period 2p or p according as n is odd or even.
(e) tannx and cotnx are periodic function with fundamental period p whether

n is odd or even.
4 Conditional trigonometric identities

If A + B + C = 180° (or p), or A, B, C are angles of a triangle. Then,
(a) sin (A + B) = sin (p – C) = sin C, etc .

(b) etc,
2
Ccos

2
C

2
sin

2
B

2
Asin =÷

ø
ö

ç
è
æ -

p
=÷

ø
ö

ç
è
æ +

(c)
2
Ccos

2
Bcos

2
Acos4CsinBsinAsin =++

(d)
2
Csin

2
Bsin

2
Asin41CcosBcosAcos +=++

(e) CtanBtanAtanCtanBtanAtan =++
(f) 1AcotCcotCcotBcotBcotAcot =++

(g) 1
2
Atan

2
Ctan

2
Ctan

2
Btan

2
Btan

2
Atan =++

4 Properties of triangle
(a) Projection formula

(i) a = b cos C + c cos B
(ii) b = c cos A + a cos C
(iii) c = a cos B + b cos A

(b) Tangent rule :

B C
tan

2
-æ ö

ç ÷è ø
 = B C

tan cot
2 2

b c b c A
b c b c

- + -æ ö =ç ÷è ø+ +
(c) Half angle formula :

(i) sin
2
A

 = 
( ) ( )s b s c

bc
- -
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(ii) cos
2
A

 = 
( )s s a

bc
-

(iii) tan
2
A

 = 
( b) ( )

( )
s s c

s s a
- -

-
(d) Area of a triangle :

D = 
1
2

 bc sin A = 
1
2

 ca sin B = 
1
2

 ab sin C

4 Orthocentre of the triangle and pedal triangle
(a) The distances of the orthocentre of the triangle from the vertices are

2RcosA, 2RcosB, 2RcosC and its distances from the sides are 2RcosB
cosC, 2RcosC cosA, 2RcosA cosB.

(b) Circumradius of the pedal triangle 
2
R

=

(c) Area of the pedal triangle .CcosBcosAcos2D=
(d) Circumcentre O, centroid G and orthocentre O' are collinear and G divides

OO¢ in the ratio 1 : 2.
(e) Distance between the circumcentre O and the incentre I is

OI = 
2
Csin

2
Bsin

2
Asin81R -

4 Heights and distances
(a) The angle of elevation or depression is the angle between the line of

observation and the horizontal line according as the object is at a
higher or lower level than the observer.

(b) The angle of elevation or depression is always measured from horizontal
line through the point of observation.


